Руководство по Термодинамике, Гидродинамике, Тепло- и Массообмену
Русский English 中文 Português Español Français Deutsch О нас Редакция Контакты Доступ Begell House
View in A-Z Index

One of the most important applications of thermodynamic processes is to do work. Work is any interaction between the system and its surrounding which can be used to lift a weight. The definition of work is


i.e., force multiplied by displacement in direction of force. The unit of work is 1 N m (Newton meter) = 1 J (Joule). Any force, such as the weight of a body, the force of a compressed spring or the attraction between two magnets can produce work. However, the force most commonly used is the pressure force, for example, in an internal combustion engine.


where p is the pressure, A the area, ds the distance moved and dV the change in volume.

If the fluid expands, V2 > V1, the piston moves upwards and work is done by the system. If the fluid is compressed, V2 < V1, the piston moves downward and work is done to the system. From this the definition of work follows: Work done by the system is positive. Work done to the system is negative.

In an open system, such as a steam turbine, the flow work during inlet and exit into the system contributes to the total work. The shaft work Ws which may be obtained by a rotating or reciprocating shaft is

Количество просмотров: 13273 Статья добавлена: 2 February 2011 Последнее изменение: 11 February 2011 © Copyright2010-2022 В начало
А-Я Индекс Авторы / Редакторы Семантическая карта Визуальная галерея Внести свой вклад Guest