Guia A a Z para Thermodinâmicas, Transferência de calor e massa, e Engenharia de Fluidos
Português English Русский 中文 Español Français Deutsch Sobre Editores Contato Acesso Begell House
View in Semantic Map View in A-Z Index


NONUNIFORM ABSORPTION OF THERMAL RADIATION OF LARGE SEMI-TRANSPARENT PARTICLES AT ARBITRARY ILLUMINATION OF THE POLYDISPESE SYSTEM

Following from: Radiative transfer problems in nature and engineering

The disperse systems of separate spherical particles or droplets randomly positioned in vacuum or gas are considered in this section. It is assumed that the average distance between the particles is large in comparison with their size and the wavelength of the external thermal radiation. In this case, one can employ the radiation transfer theory to calculate the radiation field in the medium and absorption of the radiation by particles. In such calculations, the particles are usually assumed to be isothermal and the volume distribution of the absorbed radiation power inside the particles is not considered (Viskanta and Mengç, 1989; Dombrovsky, 1996; Viskanta, 2005).

An analysis of the nonunifo ...

Você precisa de uma assinatura para acessar o conteúdo completo deste artigo.

Se você já tem a inscrição, por favor, faça login aqui
Se você quer se inscrever na THERMOPEDIA™ faça sua solicitação aqui.

References

  1. Abramson, B. and Sazhin, S., Droplet vaporization model on the presence of thermal radiation, Int. J. Heat Mass Transfer, vol. 48, no. 9, pp. 1868-1873, 2005.
  2. Abramson, B. and Sazhin, S., Convective vaporization of a fuel droplet with thermal radiation absorption, Fuel, vol. 85, no. 1, pp. 32-46, 2006.
  3. Astafieva, L. G. and Prishivalko, A. P., Heating of metallized particles by high-intensity laser radiation, J. Eng. Phys. Thermophys., vol. 66, no. 3, pp. 304-308, 1994.
  4. Astafieva, L. G. and Prishivalko, A. P., Heating of solid aerosol particles exposed to intense optical radiation, Int. J. Heat Mass Transfer, vol. 41, no. 2, pp. 489-499, 1998.
  5. Bohren, C. F. and Huffman, D. R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.
  6. Buchlin, J.-M., Thermal shielding by water spray curtain, J. Loss Prev. Process Ind., vol. 18, no. 4-6, pp. 423-432, 2005.
  7. Choudhury, D. Q., Barber, P. W., and Hill, S. C., Energy-density distribution inside large nonabsorbing spheres by using Mie theory and geometric optics, Appl. Opt., vol. 31, no. 18, pp. 3518-3523, 1992.
  8. Collin, A., Boulet, P., Parent, G., and Lacroix, D., Numerical simulation of water spray--radiation attenuation related to spray dynamics, Int. J. Therm. Sci., vol. 46, no. 9, pp. 856-868, 2007.
  9. Coppalle, A., Nedelka, D., and Bauer, B., Fire protection: Water curtains, Fire Saf. J., vol. 20, no. 3, pp. 241-255, 1993.
  10. Dombrovsky, L. A., Radiation Heat Transfer in Disperse Systems, New York: Begell House, 1996.
  11. Dombrovsky, L. A., Thermal radiation from nonisothermal spherical particles of a semi-transparent material, Int. J. Heat Mass Transfer, vol. 43, no. 9, pp. 1661-1672, 2000.
  12. Dombrovsky, L. A., A spectral model of absorption and scattering of thermal radiation by droplets of diesel fuel, High Temp., vol. 40, no. 2, pp. 242-248, 2002.
  13. Dombrovsky, L. A., Absorption of thermal radiation in large semi-transparent particles at arbitrary illumination of the polydisperse system, Int. J. Heat Mass Transfer, vol. 47, no. 25, pp. 5511-5522, 2004.
  14. Dombrovsky, L. A. and Ignatiev, M. B., An estimate of the temperature of semi-transparent oxide particles in thermal spraying, Heat Transfer Eng., vol. 24, no. 2, pp. 60-68, 2003.
  15. Dombrovsky, L. A. and Sazhin, S. S., Absorption of thermal radiation in a semi-transparent droplet: a simplified model, Int. J. Heat Fluid Flow, vol. 24, no. 6, pp. 919-927, 2003.
  16. Dombrovsky, L. A. and Sazhin, S. S., Absorption of external thermal radiation in asymmetrically illuminated droplets, J. Quant. Spectrosc. Radiat. Transf., vol. 87, no. 2, pp. 119-135, 2004.
  17. Dombrovsky, L. A. and Dinh, T. N., The effect of thermal radiation on the solidification dynamics of metal oxide melt droplets, Nucl. Eng. Des., vol. 238, no. 6, pp. 1421-1429, 2008.
  18. Dombrovsky, L. A., Sazhin, S. S., Sazhina, E. M., Feng, G., Heikal, M. R., Bardsley, M. E. A., and Mikhalovsky, S. V., Heating and evaporation of semi-transparent diesel fuel droplets in the presence of thermal radiation, Fuel, vol. 80, no. 11, pp. 1535-1544, 2001.
  19. Dombrovsky, L. A., Sazhin, S. S., Mikhalovsky, S. V., Wood, R., and Heikal, M. R., Spectral properties of diesel fuel droplets, Fuel, vol. 82, no. 1, pp. 15-22, 2003.
  20. Dombrovsky, L. A., Sazhin, S. S., and Heikal, M. R., Computational model of spectral radiation characteristics of diesel fuel droplets, Heat Transfer Res., vol. 35, no. 1-2, pp. 52-58 (translated from the original Russian publication, “Proc. 3rd Russian National Heat Transfer Conference,” Moscow, October 21-25, 2002), vol. 6, pp. 262-265, 2004.
  21. Fiszdon, J. K., Melting of powder grains in a plasma flame, Int. J. Heat Mass Transfer, vol. 22, no. 5, pp. 749-761, 1979.
  22. Foss, W. R. and Davis, E. J., Transient laser heating of single solid microspheres, Chem. Eng. Commun., vol. 152, no. 1, pp. 113-138, 1996.
  23. Grant, G., Brenton, J., and Drysdale, D., Fire suppression by water sprays, Prog. Energy Combust. Sci., vol. 26, no. 2, pp. 79-130, 2000.
  24. Hale, G. M. and Querry, M. P., Optical constants of water in the 200nm to 200μm wavelength region, Appl. Opt., vol. 12, no. 3, pp. 555-563, 1973.
  25. Harpole, G. M., Radiative absorption by evaporating droplets, Int. J. Heat Mass Transfer, vol. 23, no. 1, pp. 17-26, 1980.
  26. Lage, P. L. C. and Rangel, R. H., Total thermal radiation absorption by a single spherical droplet, J. Thermophys. Heat Transfer, vol. 7, no. 1, pp. 101-109, 1993a.
  27. Lage, P. L. C. and Rangel, R. H., Single droplet vaporization including thermal radiation absorption, J. Thermophys. Heat Transfer, vol. 7, no. 3, pp. 502-509, 1993b.
  28. Lage, P. L. C., Hackenberg, C. M., and Rangel, R. H., Nonideal vaporization of dilating binary droplets with radiation absorption, Combust. Flame, vol. 101, no. 1, pp. 36-44, 1995.
  29. Lai, H. M., Leung, P. T., Poon, K. L., and Young, K., Characterization of the internal energy density in Mie scattering, J. Opt. Soc. Am. A, vol. 8, no. 10, pp. 1553-1558, 1991.
  30. Liu, L. H., Tan, H. P., and Tong, T. W., Internal distribution of radiation absorption in a semi-transparent spherical particle, J. Quant. Spectrosc. Radiat. Transf., vol. 72, no. 6, pp. 747-756, 2002.
  31. Lock, J. A. and Hovenac, E. A., Internal caustic structure of illuminated liquid droplets, J. Opt. Soc. Am. A, vol. 8, no. 10, pp. 1541-1552, 1991.
  32. Longtin, J. P., Qui, T. Q., and Tien, C. L., Pulsed heating of highly absorbing particles, ASME J. Heat Transfer, vol. 117, no. 3, pp. 758-788, 1995.
  33. Park, B.-S. and Armstrong, R. L., Laser droplet heating: fast and slow heating regimes, Appl. Opt., vol. 28, no. 17, pp. 3671-3680, 1989.
  34. Prishivalko, A. P., Optical and Thermal Fields in Light Scattering Particles, Minsk: Nauka i Tekhnika (in Russian), 1983a.
  35. Prishivalko, A. P., Heating and destruction of water drops on exposure to radiation with inhomogeneous internal heat evolution, Russ. Phys. J., vol. 26, no. 2, pp. 142-148, 1983b.
  36. Ravigururajan, T. S. and Beltran, M. R., A model for attenuation fire radiation through water droplets, Fire Saf. J., vol. 15, no. 2, pp. 171-181, 1989.
  37. Sacadura, J.-F., Radiative heat transfer in fire safety science, J. Quant. Spectrosc. Radiat. Transf., vol. 93, no. 1-3, pp. 5-24, 2005.
  38. Sazhin, S. S., Advanced models of fuel droplet heating and evaporation, Prog. Energy Combust. Sci., vol. 32, no. 2, pp. 162-214, 2006.
  39. Sazhin, S. S., Kristyadi, T., Abdelghaffar, W. A., Begg, S., Heikel, M. R., Mikhalovsky, S. V., Meikle, S. T., and Al-Hanbali, O., Approximate analysis of thermal radiation absorption in fuel droplets, ASME J. Heat Transfer, vol. 129, no. 9, pp. 1246-1255, 2007.
  40. Sirignano, W. A., Fluid Dynamics and Transport of Droplets and Sprays, Cambridge, UK: Cambridge University Press, 1999.
  41. Sitarski, M. A., Thermal dynamics of a small vaporizing slurry droplet in a hot and radiant environment; feasibility of the secondary atomization, Combust. Sci. Technol., vol. 71, no. 1-3, pp. 53-75, 1990.
  42. Tseng, C. C. and Viskanta, R., Effect of radiation absorption on fuel droplet evaporation, Combust. Sci. Technol., vol. 177, no. 8, pp. 1511-1542, 2005.
  43. Tseng, C. C. and Viskanta, R., Heating/melting of a semi-transparent particle including radiation effects, Int. J. Therm. Sci., vol. 45, no. 10, pp. 945-954, 2006a.
  44. Tseng, C. C. and Viskanta, R., Heating/melting of a fused silica particle by convection and radiation, Int. J. Heat Mass Transfer, vol. 49, no. 17-18, pp. 2995-3003, 2006b.
  45. Tseng, C. C. and Viskanta, R., Enhancement of Water Droplet Evaporation by Radiation Absorption, Fire Saf. J., vol. 41, no. 3, pp. 236-247, 2006c.
  46. Tuntomo, A. and Tien, C. L., Transient heat transfer in a conducting particle with internal radiant absorption, ASME J. Heat Transfer, vol. 114, no. 2, pp. 304-309, 1992.
  47. van de Hulst, H. C., Light Scattering by Small Particles, New York: Wiley, 1957.
  48. van de Hulst, H. C., Light Scattering by Small Particles, New York: Dover, 1981.
  49. Viskanta, R., Radiative Transfer in Combustion Systems: Fundamentals and Applications, New York: Begell House, 2005.
  50. Viskanta, R. and Mengç, M. P., Radiative transfer in dispersed media, Appl. Mech. Rev., vol. 42, no. 9, pp. 241-259, 1989.
  51. Yang, W., Parker, T., Ladouceur, H. D., and Kee, R. J., The interaction of thermal radiation and water mist in fire suppression, Fire Saf. J., vol. 39, no. 1, pp. 41-66, 2004.
Número de visualizações: 40340 Artigo adicionado: 7 September 2010 Última modificação do artigo: 20 September 2011 © Copyright 2010-3921 Voltar para o topo
Índice A-Z Autores / Editores Mapa semântico Galeria Visual Contribuir Guest