ThermodynamicsのA-Zガイド、熱&アンプ、質量移動、流体工学
English Русский 中文 Português Español Français Deutsch 概要 編集委員会 連絡先 アクセス Begell House
View in A-Z Index

Isoenthalpic means constant enthalpy, and any material which passes through a system without a change of enthalpy has, by definition, passed through an isoenthalpic process. For an open system at steady flow:

If, in addition, the process is adiabatic (Q = 0) and there is no work transfer (W = 0), then if the sum of the changes in kinetic and potential energy are zero, the process is isoenthalpic. For instance, it is common to assume that a gas or vapor flashing through a valve is an isoenthalpic process. In such an example, the residence time and contact area available within the valve is so small that very little heat transfer can occur, so the process is approximately adiabatic. The valve does not transfer work to the surroundings and the inlet and outlet are at such similar elevations that changes of gravitational potential energy can be neglected. Finally, it is common to neglect the change in kinetic energy since the diameters of the inlet and outlet pipes can be, and often are, selected to minimize the change in velocity of the fluid.

The assumption that a process is isoenthalpic gives a simple method for determining the change in temperature of fluid flowing through the process, provided the upstream conditions and the downstream pressure are known, as follows:

Knowing the upstream conditions, the upstream enthalpy is known or can be calculated. Knowing that the downstream enthalpy is the same as the upstream enthalpy and knowing the downstream pressure, the temperature and condition of the downstream fluid can be determined.

表示回数: 20200 記事追加日: 2 February 2011 記事最終修正日: 13 February 2011 ©著作権 2010-2022 トップへ戻る
A-Z索引 著者/編集者 意味マップ ビジュアルギャラリー 寄稿 Guest