Related articles in HEDH:

1. Ackerman correction factor in condensation, 2.6.3-9

2. Annular ducts:

1. critical heat flux in flow in, 2.7.3-28 - 2.7.3-33

2. forced convective heat transfer in single phase flow:

1. laminar flow, 2.5.1-13 - 2.5.1-14

2. with liquid metals, 2.5.13-1 - 2.5.13-2

3. turbulent heat transfer in 2.5.1-14

4. turbulent heat transfer in 2.5.1-18

3. free convective heat transfer in closed-end: horizontal, 2.5.8-14 - 2.5.8-16

1. vertical (heated on vertical curved surfaces), 2.4.8-13 - 2.5.8-14

4. heat transfer to liquid metals in, 2.5.13-2 - 2.5.13-3

5. single phase flow and pressure drop in, 2.2.2-8 - 2.2.2-10

1. laminar flow, 2.2.2-8 - 2.2.2-9

2. turbulent flow, 2.2.2-9 - 2.2.2-10

6. with rotating inner surface 2.2.1-1 - 2.2.1-9

1. flow pattern in, 2.1.9-1 - 2.1.9-3

2. pressure drop in, 2.1.9-3 - 2.1.9-7

3. generalised correlation for friction factor in, 2.1.9-4 - 2.1.9-7

4. heat transfer in, 2.5.16-1 - 2.5.16-5

5. generalised correlation for heat transfer coefficient, 2.5.16-1 - 2.5.16-4

7. with rotating inner surface 2.5.16-1 - 2.5.16-5

3. Annular flow (liquid-liquid), 2.3.5-10 - 2.3.5-14

1. pressure drop and holdup in, 2.3.5-11 - 2.3.5-14

4. Boilers:

1. as type of heat exchanger, 1.1.5-2

2. combustion systems for firing, 3.11.2-3 - 3.11.2-5

3. fouling in, 3.17.7-12 - 3.17.7-14

4. waste heat, 3.16.1-1 - 3.16.4-2

5. Boiling:

1. augmentation of heat transfer in, 2.7.9-1 - 2.7.9-48

1. pool boiling, 2.7.9-1 - 2.7.9-10

2. prediction methods for, 2.7.9-30 - 2.7.9-40

3. within tubes, 2.7.9-10 - 2.7.9-27

4. within tube bundles, 2.7.9-27 - 2.7.9-30

2. in axial flow reboilers, 3.6.2-8 - 3.6.2-13

3. basic processes, 2.7.1-1 - 2.7.1-15

1. bubble detachment and frequency, 2.7.1-10 - 2.7.1-12

2. bubble growth, 2.7.1-7 - 2.7.1-10

3. evaporation, 2.7.1-2 - 2.7.1-3

4. heterogeneous nucleation, 2.7.1-5 - 2.7.1-7

5. homogeneous nucleation, 2.7.1-3 - 2.7.1-4

6. sizing of active nucleation sites, 2.7.1-5 - 2.7.1-7

7. vapor formation, 2.7.1-1 - 2.7.1-2

4. direct contact, 2.10.3-1 - 2.10.3-4

5. of binary and multicomponent mixtures: basic process in, 2.7.6-1 - 2.7.6-9

1. forced convective boiling, 2.7.8-1 - 2.7.8-10

2. pool boiling, 2.7.7-1 - 2.7.7-7

6. in evaporators, 3.5.7-4

7. fouling in, 3.17.2-4

8. in horizontal tubes, 2.7.4-1 - 2.7.4-8

1. critical heat flux in, 2.7.4-7 - 2.7.4-8

2. flow patterns in, 2.7.4-1 - 2.7.4-4

3. annular flow, 2.7.4-3 - 2.7.4-4

4. bubbly flow, 2.7.4-2

5. intermittent flow, 2.7.4-2 - 2.7.4-3

6. stratified flow, 2.7.4-2

7. heat transfer coefficients in, 2.7.4-4 - 2.7.4-5

8. Bandel and Schlunder correlation for, 2.7.4-4 - 2.7.4-5

9. Shah correlation for, 2.7.4-5 - 2.7.4-6

9. in inclined tubes, 2.7.4-8

10. in kettle and horizontal thermosiphon reboilers, 3.6.2-1 - 3.6.2-6

11. in microchannels, 2.13.4-1 - 2.13.4-27

1. critical heat flux in, 2.13.4-19 - 2.13.4-23

2. in flow in, 2.13.4-6 - 2.13.4-13

3. models for, 2.13.4-13 - 2.13.4-14

4. onset of nucleate boiling in, 2.13.4-14 - 2.13.4-16

5. pressure drop in, 2.13.4-16 - 2.13.4-19

6. two-phase flow in, 2.13.4-4 - 2.13.4-6

7. void fraction in, 2.13.4-3 - 2.13.4-4

12. in plate heat exchangers, 3.7.3-5

13. pool boiling, 2.7.2-1 - 2.7.2-24

1. boiling curve for, 2.7.2-1

2. critical heat flux in, 2.7.2-13 - 2.7.2-17

3. film boiling in, 2.7.2-18 - 2.7.2-20

4. minimum heat flux in, 2.7.2-18

5. nucleate boiling in, 2.7.2-3 - 2.7.2-13

6. onset of nucleate boiling in, 2.7.2-2 - 2.7.2-3

7. transition boiling in, 2.7.2-17 - 2.7.2-18

14. outside tubes and tube bundles, 2.7.5-1 - 2.7.5-14

1. augmentation of, 2.7.9-27 - 2.7.9-30

2. augmentation of, 2.7.9-38 - 2.7.9-40

15. outside tubes and tube bundles, 3.6.2-1 - 3.6.2-13

16. single tube in crossflow, 2.7.5-1 - 2.7.5-5

1. tube bundles, 2.7.5-5 - 2.7.5-11

17. in vertical tubes, 2.7.3-1 - 2.7.3-50

1. critical heat flux, 2.7.3-17 - 2.7.3-37

2. heat transfer in the region where critical heat flux has been exceeded, 2.7.3-37 - 2.7.3-43

3. regimes of flow and heat transfer in, 2.7.3-1 - 2.7.3-6

4. saturated boiling, 2.7.3-11 - 2.7.3-17

5. subcooled boiling, 2.7.3-6 - 2.7.3-11

6. Boiling curve:

1. in binary mixtures, 2.7.7-1

2. in pool boiling, 2.7.2-1

1. effect of surface finish on, 2.7.2-3

3. for single horizontal tube in crossflow, 2.7.5-1

4. for tube banks, 2.7.5-4

7. Boiling length:

1. definition, 2.7.3-20

2. quality/boiling length correlations, 2.7.3-20

1. application of nonuniform heating cases, 2.7.3-24

8. Boiling number, definition, 2.7.4-5

9. Boiling point, normal, 5.1.3-7 - 5.1.3-12

1. of commonly used fluids, 5.5.1-1 - 5.5.1-178

2. of commonly used fluids, 5.5.10-1 - 5.5.10-175

3. of commonly used fluids, 5.5.11-1 - 5.5.11-174

10. Boiling range (in multicomponent mixtures):

1. influence on selection of reboilers, 3.6.1-8

1. very wide, effect on reboiler design, 3.6.4-3

11. Boiling surface in boiling in vertical tubes, 2.7.3-5

12. Boiling Water Reactor (BWR), fouling problems in, 3.17.9-6 - 3.17.9-8

1. deposit formation, 3.17.9-7 - 3.17.9-8

2. impact on operation, 3.17.9-8

3. mitigation, 3.17.9-8

13. Bolted channel head in shell-and-tube exchanger, 4.2.4-1

14. Bolted cone head in shell-and-tube heat exchanger, 4.2.4-2

15. Bolting, 4.13.1-1 - 4.13.6-3

1. applied bolt load, 4.13.4-1 - 4.13.4-3

2. bolt characteristics, 4.13.2-1

3. flange integrity in, 4.13.6-1 - 4.13.6-3

1. torque wrench use, 4.13.6-2

4. load measurement, 4.13.5-1

5. required bolt load, 4.13.3-1 - 4.13.3-2

1. in combined free and forced convection heat transfer to immersed bodies, 2.5.9-1 - 2.5.9-3

16. Bubble flow:

1. drift flux model for, in vertical flow, 2.3.2-18 - 2.3.2-19

2. in boiling in horizontal tubes, 2.7.4-2

3. regions of occurrence: in horizontal flow, 2.3.2-2 - 2.3.2-4

1. in inclined tubes, 2.3.2-4 - 2.3.2-5

2. in shell-and-tube heat exchangers, 2.3.2-5 - 2.3.2-6

3. in systems with phase change, 2.3.2-6 - 2.3.2-7

4. in vertical flow, 2.3.2-1 - 2.3.2-2

17. Bubble-type direct-contact condensers, 3.20.4-1 - 3.20.4-5

1. effect of noncondensable vapors in, 3.20.4-2

2. Florschuetz and Chao equation for bubble collapse in, 3.20.4-1

3. Jacobs and Major model for condensation of bubbles forming immiscible liquids in, 3.20.4-1

4. use as vapor suppression system, 3.20.4-4

5. Wittke and Chao model for collapse of moving bubble in, 3.20.4-1

18. Bubbles:

1. formation of, 3.19.2-1 - 3.19.2-4

2. in boiling of binary mixtures: growth, 2.7.6-5 - 2.7.6-7

1. nucleation, 2.7.6-5

3. in boiling of single components: detachment and frequency, 2.7.1-10 - 2.7.1-12

1. growth, 2.7.1-7 - 2.7.1-10

2. nucleation, 2.7.1-1 - 2.7.1-7

4. indirect contact heat transfer, 2.10.2-4 - 2.10.2-6

5. in fluidized beds, 2.2.6-8 - 2.2.6-12

6. in foam systems, 2.12.1-4 - 2.12.1-5

7. in gas-liquid flow: horizontal tubes, 2.3.2-2 - 2.3.2-4

1. vertical tubes, 2.3.1-1 - 2.3.2-2

2. vertical tubes, 2.3.2-18 - 2.3.2-19

3. on solid surface, simulation of using molecular dynamics methods, 2.13.7-16 - 2.13.7-17

8. rise velocity of gas bubbles in liquid, 2.3.2-18 - 2.3.2-19

19. Cavitation as source of damage in heat exchangers, 4.5.3-1

20. Churn flow, regions of occurrence of, 2.3.2-1 - 2.3.2-2

21. CISE correlations for void fractions, 2.3.2-14 - 2.3.2-15

22. Coalescence of bubbles in fluidized beds, 2.2.6-9 - 2.2.6-10

23. Cocurrent flow:

1. F-factor chart for, 1.5.2-3

2. heat exchangers, 1.1.1-1 - 1.1.1-2

1. single-phase temperature pattern in, 1.1.3-1

2. solutions for, 1.3.1-1 - 1.3.1-4

3. ?-NTU chart for, 1.5.2-3

24. Combined heat and mass transfer, 2.1.6-1 - 2.1.6-4

1. in condensation of mixtures, 2.1.6-2 - 2.1.6-4

2. in drying, 2.1.6-1 - 2.1.6-2

3. in evaporation of binary and multicomponent mixtures, 2.7.8-2 - 2.7.8-5

25. Compressed liquids, density of:

1. liquid mixtures, 5.2.1-5

26. Condensation:

1. augmentation of heat transfer in, 2.6.6-1 - 2.6.6-32

1. axial wire attachments for, 2.6.6-9

2. basic approaches, 2.6.6-2

3. coiled tubes for, 2.6.6-23

4. electric fields in, 2.6.6-13

5. fluted tubes for, 2.6.6-6 - 2.6.6-9

6. Gregoric surfaces in, 2.6.6-4

7. in dropwise condensation, 2.6.6-5

8. in plate type heat exchangers, 2.6.6-23

9. integral (low fin) tubes for 2.6.6-15 - 2.2.6-17

10. integral (low fin) tubes for 2.6.6-9 - 2.6.6-12

11. internally finned tubes for 2.6.6-17

12. internally finned tubes for 2.6.6-24

13. micro-fin tubes for 2.6.6-18 - 2.6.6-20

14. micro-fin tubes for 2.6.6-25

15. non-wetting surfaces for, 2.6.6-5 - 2.6.6-6

16. roughness effects in 2.6.6-22

17. roughness effects in 2.6.6-25

18. roughness effects in 2.6.6-6

19. surface tension effects in, 2.6.6-3 - 2.6.6-8

20. twisted tape inserts for 2.6.6-21

21. twisted tape inserts for 2.6.6-25

22. wire-wrapped tubes for, 2.6.6-9

2. combined heat and mass transfer in, 2.1.6-2 - 2.1.6-4

3. condensate subcooling in, 2.6.3-16 - 2.6.3-17

4. differential, 3.4.4-2

5. direct-contact, 2.10.3-4 - 2.10.3-12

6. dropwise, 2.6.5-1 - 2.6.5-11

1. promoters for, 2.6.5-1 - 2.5.6-2

2. effect of non-condensing gas on, 2.6.5-2

3. mechanisms of, 2.6.5-2 - 2.6.5-4

4. condensation of steam in, 2.6.5-4 - 2.6.5-8

5. of organic fluids, 2.6.5-8 - 2.6.5-9

7. film, introduction to, 2.1.7-4 - 2.1.7-6

8. filmwise, of pure vapor, 2.6.2-1 - 2.6.2-19

1. outside horizontal and inclined tubes, 2.6.2-8 - 2.6.2-12

2. outside horizontal and inclined tubes, 3.4.6-3

3. inside horizontal tubes 2.6.2-12 - 2.6.2-15

4. inside horizontal tubes 3.4.6-2

5. interfacial resistance in, 2.6.2-14

6. liquid metals, 2.6.2-15 - 2.6.2-16

7. on vertical surfaces 2.6.2-2 - 2.6.2-9

8. on vertical surfaces 3.4.6-3

9. fogging in 2.6.3-20

1. conditions producing supersaturation, 2.6.7-2 - 2.6.7-3

2. design to minimize, 2.6.7-3

3. effects, 2.6.7-3

4. fouling in, 3.17.2-4

5. nuclei formation, 2.6.7-1 - 2.6.7-2

6. supersaturation, 2.6.7-1

10. fogging in 2.6.7-1 - 2.6.7-4

11. in horizontal tubes, flow regimes in, 2.3.2-7

12. in microchannels, 2.13.6-1 - 2.13.6-30

1. applications of, 2.13.6-1 - 2.13.6-2

2. flow regimes in horizontal channels with, 2.13.6-2 - 2.13.6-5

3. flow regimes in vertical channels with, 2.13.6-5

4. heat transfer coefficients in, 2.13.6-19 - 2.13.6-27

5. pressure drop in, 2.13.6-5 - 2.13.6-19

13. in multistage flash evaporator systems, 3.22.2-8 - 3.22.2-11

14. integral, 3.4.4-2

15. introduction to, 2.6.1-1

1. heat transfer resistances in, 2.6.1-2

2. modes of, 2.6.1-1 - 2.6.1-2

16. in plate exchangers, 3.7.3-5

17. in plate fin heat exchangers, 3.9.13-1 - 3.9.13-2

18. of vapor mixture 2.6.3-1 - 2.6.3-25

1. approximate method, 2.6.3-2 - 2.6.3-7

2. binary vapor mixtures, 2.6.3-7 - 2.6.3-13

3. multicomponent mixtures, 2.6.3-13 - 2.6.3-25

4. single vapor with noncondensable gas, 2.6.3-5 - 2.6.3-25

19. of vapor mixture 3.4.6-4

20. of vapor mixtures forming immiscible liquids 2.6.3-13

21. of vapor mixtures forming immiscible liquids 2.6.4-1 - 2.6.4-16

22. on finned tubes, 3.4.6-3

23. eutectic mixtures, 2.6.4-2 - 2.6.4-3

24. with incondensable gases, 2.6.4-5 - 2.6.4-7

25. noneutectic mixtures, 2.6.4-3 - 2.6.4-5

27. Condensation curves:

1. description, 2.6.3-1 - 2.6.3-2

2. differential, 2.6.3-4 - 2.6.3-5

3. integral, 2.6.3-3 - 2.6.3-5

4. with immiscible liquids, 2.6.4-3 - 2.6.4-10

28. Condenser/preheater tubes, in multistage flash evaporation, 3.22.2-8 - 3.22.2-11

29. Condensers:

1. approximate overall heat transfer coefficients in, 2.1.2-3

2. condensate subcooling in, 2.6.3-16 - 2.6.3-17

3. design procedures for 3.4.4-1 - 3.4.4-3

1. inside tubes, 3.4.9-2 - 3.4.9-3

2. outside tubes, 3.4.9-3 - 3.4.9-4

3. overall, 3.4.9-1 - 3.4.9-2

4. design procedures for 3.4.9-1 - 3.4.9-4

5. direct-contact, 3.20.1-1 - 3.20.4-9

1. bubble-type, 3.20.4-1 - 3.20.4-5

2. drop-type, 3.20.2-1 - 3.20.2-9

3. film-type, 3.20.3-1 - 3.20.3-5

4. introduction to, 3.20.1-1 - 3.20.1-4

6. discussion of types, 3.4.3-1 - 3.4.3-8

1. horizontal, outside tubes, 3.4.3-3 - 3.4.3-6

2. turbine exhaust (surface condensers), 3.4.3-6 - 3.4.3-8

3. vertical downflow, 3.4.3-1 - 3.4.3-2

4. vertical reflux, 3.4.3-2 - 3.4.3-3

5. vertical upflow, 3.4.3-2

6. vertical, outside tubes, 3.4.3-6

7. fogging in 2.6.3-20

8. fogging in 2.6.7-1 - 2.6.7-4

9. fogging in 3.4.5-2

10. fouling in, 3.4.5-2

11. heat transfer in, 3.4.6-1 - 3.4.6-4

1. finned tubes, 3.4.6-3

2. outside horizontal tubes, 3.4.6-3

3. with mixtures, 3.4.6-4

4. subcooling in, 3.4.6-4

5. inside tubes, 3.4.6-1 - 3.4.6-2

6. outside vertical tubes, 3.4.6-3 - 3.4.6-4

12. in Ocean Thermal Energy Conversion (OTEC) systems, 3.22.3-12 - 3.22.3-15

13. introduction to, 3.4.1-1 - 3.4.1-2

14. mean temperature difference in, 3.4.8-1 - 3.4.8-3

15. operational problems in 3.4.5-1 - 3.4.5-3

1. condensate freezing, 3.18.4-2

2. fogging, 3.4.5-2

3. fouling, 3.4.5-2

4. freezing of condensate, 3.4.5-2 - 3.4.5-3

5. inadequate condensate drainage, 3.4.5-2

6. overcapacity, 3.4.5-1 - 3.4.5-2

7. parallel channel instability, 3.4.5-3

8. reflux, 3.4.5-2

9. vacuum equipment, 3.18.4-2

10. venting 3.4.3-7 - 3.4.3-8

11. venting 3.4.5-2

16. operational problems in 3.18.4-1 - 3.18.4-3

17. pressure drop in, 3.4.7-1 - 3.4.7-2

18. reflux, design of, 2.6.3-21 - 2.6.3-22

19. temperature patterns in, 1.1.3-1 - 1.1.3-2

20. as type of heat exchanger, 1.1.5-2

21. for use in association with evaporators, 3.5.4-2

30. Contact angle, 2.3.1-2

1. estimation of using molecular dynamics methods, 2.17.7-18

2. influence in nucleate boiling 2.7.1-6 - 2.7.1-7

3. influence in nucleate boiling 2.7.2-2

31. Cooling curves, in condensation, 2.6.3-2 - 2.6.3-5

32. Countercurrent flow:

1. critical heat flux in, 2.7.3-26

2. gas-liquid, in vertical channels, 2.3.2-21 - 2.3.2-22

3. heat exchangers, 1.1.1-1

1. temperature pattern for in single-phase flow, 1.1.3-1

4. P-NTU chart for, 1.5.2-2

33. Critical heat flux:

1. in axial flow reboilers, 3.6.2-9 - 3.6.2-13

2. in countercurrent flow, 2.7.3-33 - 2.7.3-34

3. enhancement of, in boiling in tubes, 2.7.9-19 - 2.7.9-26

4. in evaporators, 3.5.7-5

5. in flow in horizontal tubes, 2.7.4-7 - 2.7.4-8

1. Merilo correlation for, 2.7.4-7 - 2.7.4-8

6. in flow in inclined tubes, 2.7.4-8

7. in flow in vertical annuli, 2.7.3-25

8. in flow in vertical tubes, 2.7.3-17 - 2.7.3-37

1. nomenclature for, 2.7.3-17

2. with nonuniform heat flux, 2.7.3-23 - 2.7.3-25

3. with uniform heat flux, 2.7.3-17 - 2.7.3-23

9. in forced convective boiling of binary and multicomponent departure from nucleate boiling, 2.7.8-9 - 2.7.8-11

1. dryout, 2.7.8-11

10. in kettle reboilers, 3.6.2-5 - 3.6.2-7

11. mechanisms of, 2.7.3-26 - 2.7.3-28

1. annular flow prediction methods for, 2.7.3-28 - 2.7.3-33

12. in microchannels, 2.13.4-19 - 2.13.4-23

13. with nonaqueous fluids, 2.7.3-34 - 2.7.3-37

14. in pool boiling, 2.7.2-13 - 2.7.2-17

1. geometric effects in, 2.7.2-14 - 2.7.2-16

2. liquid viscosity effects on, 2.7.2-14

3. mechanisms of, 2.7.2-13

4. subcooling effects on, 2.7.2-16 - 2.7.2-17

5. surface condition effects on, 2.7.2-17

6. Zuber analysis for, 2.7.2-9 - 2.7.2-13

15. in pool boiling of binary and multicomponent mixtures, 2.7.7-6 - 2.7.7-8

16. in rectangular channels, 2.7.3-20

17. in rod bundles, 2.7.3-21 - 2.7.3-22

18. outside single tubes in crossflow, 2.7.5-3 - 2.7.5-5

19. outside tubes in tube banks, 2.7.5-9 - 2.7.5-11

1. correlations for, 2.7.5-10 - 2.7.5-11

2. mechanisms of, 2.7.5-10

20. problems in vaporizer ducts, 3.18.5-2

34. Cylinders:

1. boiling from outside horizontal in crossflow, 2.7.5-1 - 2.7.5-4

35. Density:

1. of fluid mixtures, 5.2.1-1 - 5.2.1-8

2. of multicomponent liquid mixtures, 5.2.3-1 - 5.2.3-2

36. Desuperheaters for use in association with evaporators, 3.5.4-4

37. Differential condensation:

1. calculation of condensation curves, 2.6.3-5

2. description 2.6.3-3 - 2.6.3-5

3. description 3.4.4-2

38. Direct-contact condensers, 3.20.1-1 - 3.20.4-5

1. bubble-type 3.20.1-3

1. effect of incondensable vapors in, 3.20.4-2

2. Florschuetz and Chao equation for bubble collapse in, 3.20.4-1

3. Jacobs and Major model for condensation of vapour forming immiscible liquids in, 3.20.4-2

4. use as vapor suppression systems, 3.20.4-4

5. Wittke and Chao model for collapse of moving bubble in, 3.20.4-1

2. bubble-type 3.20.4-1 - 3.20.4-5

3. drop-type, 3.20.2-1 - 3.20.2-9

1. barometric condenser, 3.20.1-2

2. condensation on jets and sheets in, 3.20.2-3 - 3.20.2-8

3. energy balances for, 3.20.2-1 - 3.20.2-3

4. Jacobs and Cook equation for drop growth in, 3.20.2-2

5. Lekic and Ford equation for drop velocity in, 3.20.1-1

6. solid-curtain condenser, 3.20.1-2

7. spray condenser, 3.20.1-2

8. Westinghouse jet condenser, 3.20.1-3

4. film-type 3.20.1-3

1. condensation on a film flowing down a plate, 3.20.3-1 - 3.20.3-3

2. condensation on a film flowing over sphere, 3.20.3-3 - 3.20.3-4

3. effect of noncondensables in, 3.20.3-3 - 3.20.3-4

4. packed-bed condenser, 3.20.1-3

5. volumetric heat transfer coefficients in packed bed condensers, 3.20.3-3

5. film-type 3.20.3-1 - 3.20.3-5

6. introduction to, 3.20.1-1 - 3.20.1-4

39. Distillation:

1. closed distillation process, 2.1.7-8

2. lost work in, 1.9.5-8 - 1.9.5-10

40. Distribution:

1. annular, in shell-and-tube heat exchangers, 3.3.5-11

2. design in fluidized beds, 2.2.6-12 - 2.2.6-13

3. in plate heat exchangers, 3.7.2-2

41. Drop-type direct-contact condensers, 3.20.2-1 - 3.20.2-9

1. barometric condenser, 3.20.1-2

2. condensation on drops and sheets in, 3.20.2-3 - 3.20.2-8

3. energy balances for, 3.20.2-1 - 3.20.2-3

4. Jacobs and Cook equation for drop growth in, 3.20.2-2

5. Lekic and Ford equation for drop velocity in, 3.20.1-1

6. solid-curtain condenser, 3.20.1-2

7. spray condenser, 3.20.1-8

8. Westinghouse jet condenser, 3.20.1-3

42. Droplets:

1. condensation on, 2.10.2-1 - 2.10.2-7

2. deposition and entrainment of, in annular flow, 2.3.2-21

3. formation of, 3.19.2-1 - 3.19.2-4

4. in direct contact heat transfer, 2.10.2-4 - 2.10.2-6

5. nucleation of in supersaturated vapors, 2.6.7-1 - 2.6.7-2

6. on solid surfaces, molecular dynamics simulation of, 2.13.7-16 - 2.13.7-19

7. size in liquid-liquid dispersed flow, 2.3.5-22 - 2.3.5-24

43. Dropwise condensation 2.6.5-1 - 2.6.5-11

1. condensation of steam in, 2.6.5-4 - 2.6.5-8

2. effect of non-condensing gas on, 2.6.5-2

3. introduction 2.1.7-6

4. introduction 2.6.1-1

5. introduction 2.6.5-1

6. mechanisms of, 2.6.5-2 - 2.6.5-4

7. of organic fluids, 2.6.5-8 - 2.6.5-9

8. promotors for, 2.6.5-1 - 2.6.5-2

44. Dropwise condensation 2.6.6-5

45. Dryers:

1. classification and selection, 3.13.2-1 - 3.13.2-4

2. introduction, 3.13.1-1 - 3.13.1-2

3. layout and performance data, 3.13.3-1 - 3.13.3-5

1. description of drying process in the Mollier chart, 3.13.3-4 - 3.13.3-5

2. energy and mass balances, 3.13.3-1 - 3.13.3-2

3. Mollier chart, 3.13.3-1

4. wet bulb temperature in, 3.13.3-2 - 3.13.3-4

4. practical design, 3.13.7-1 - 3.13.7-3

1. band dryers, 3.13.7-1 - 3.13.7-2

2. fluid bed dryers, 3.13.7-2

3. pneumatical conveying dryers, 3.13.7-2

4. rotary dryers, 3.13.7-2

5. spray dryers, 3.13.7-2 - 3.13.7-3

5. prediction of drying rates in, 3.13.4-1 - 3.13.4-5

6. prediction of residence time in: with nonprescribed material flow, 3.13.6-1

1. with prescribed material flow, 3.13.5-1 - 3.15.5-5

7. as type of heat exchange equipment, 1.1.5-3

46. Drying, combined heat and mass transfer in, 2.1.6-1 - 2.1.6-2

47. Drying loft, 3.13.2-3

48. Drying rates, prediction of, 3.13.4-1 - 3.13.4-5

49. Dryout:

1. introduction, 2.7.3-2

2. as mechanism for critical heat flux: of liquid film, 2.7.3-26 - 2.7.3-33

3. under a vapor clot, 2.7.3-27

50. Energy equation:

1. in gas-liquid flows, 2.3.2-8 - 2.3.2-9

1. homogeneous flow, 2.3.2-8

2. separated flow, 2.3.2-8 - 2.3.2-9

2. in multiphase flows: homogeneous, 2.3.1-5 - 2.3.1-6

1. separated flow, 2.3.1-7

51. Enlargements in pipes:

1. two-phase flow and pressure drop in, 2.3.2-15 - 2.3.2-16

1. slow change, 2.3.2-15 - 2.3.2-16

2. sudden enlargement, 2.3.2-16

52. Enthalpy:

1. of vaporisation, 5.1.3-4 - 5.1.3-7

1. from normal boiling point (Chen method), 5.1.3-5

2. from normal boiling point (Reide/method), 5.1.3-5

3. from normal boiling point (Vetere method), 5.1.3-6

4. from vapour-pressure equation, 5.1.3-5

53. Entrainment in annular gas-liquid flow 2.3.2-11

54. Entrainment in annular gas-liquid flow 2.7.3-24

55. Evaporation:

1. direct contact, 2.10.3-1 - 2.10.3-4

2. flow regimes in, 2.3.2-6 - 2.3.2-7

3. fouling in, 3.17.7-9 - 3.17.7-10

4. at an interface, 2.7.1-2

5. interfacial resistance in, 2.1.7-8

6. introduction to, 2.1.7-6 - 2.1.7-8

7. in plate fin heat exchangers, 3.9.13-1 - 3.9.13-2

56. Evaporative crystallisers, 3.5.2-10 - 3.5.2-12

57. Evaporators:

1. arrangements for thermal economy, 3.5.3-1 - 3.5.3-4

1. flash evaporation, (see also Flash evaporation) 3.5.3-3

2. multiple effect, 3.5.3-1 - 3.5.3-2

3. vapor recompression, 3.5.3-2 - 3.5.3-3

2. choice of tube diameter for, 3.5.5-3

3. choice of type of, 3.5.5-1 - 3.5.5-3

1. concentration, 3.5.5-2

2. crystallization, 3.5.5-2 - 3.5.5-3

3. vaporization, 3.5.5-2

4. design aspects, 3.5.4-1 - 3.5.4-5

1. condensers for, 3.5.4-2 - 3.5.4-3

2. crystallisers, 3.5.4-4 - 3.5.4-5

3. desuperheaters for, 3.5.4-4

4. hot fluid space in, 3.5.4-1

5. separators for, 3.5.4-1 - 3.5.4-2

5. estimation of heat transfer coefficients in, 3.5.7-1 - 3.5.7-6

1. boiling liquid, 3.5.7-3 - 3.5.7-5

2. critical heat flux, 3.5.7-5

3. dry wall convection, 3.5.7-5

4. liquid falling film evaporation, 3.5.7-3

5. mixture effects, 3.5.7-4 - 3.5.7-5

6. nucleate boiling, 3.5.7-3 - 3.5.7-4

7. two-phase convective boiling, 3.5.7-4

8. fouling, 3.5.7-2

9. heating fluid, 3.5.7-1

10. wall, 3.5.7-1 - 3.5.7-2

6. estimation of pressure drop and circulation in, 3.5.6-2

7. estimation of surface area in, 3.5.8-4

1. computer-aided design, 3.5.8-2 - 3.5.8-4

2. manual methods, 3.5.8-1 - 3.5.8-2

8. in Ocean Thermal Energy Conversion (OTEC) systems 3.22.2-12 - 3.22.2-15

9. introduction to, 3.5.1-2

10. as type of heat exchanger, 1.1.5-2

11. types, 3.5.2-1 - 3.5.2-12

1. basket, 3.5.2-3 - 3.5.2-4

2. bayonet-tube, 3.5.2-1 - 3.5.2-2

3. climbing film, 3.5.2-5 - 3.5.2-6

4. evaporative crystallisers, 3.5.2-10 - 3.5.2-12

5. falling film 3.5.2-6 - 3.5.2-7

6. falling film 3.6.1-7 - 3.6.1-8

7. horizontal shell side, 3.5.2-1

8. horizontal tube side, 3.5.2-7 - 3.5.2-8

9. long-tube vertical, 3.5.2-3 - 3.5.2-4

10. plate 3.5.2-9

11. plate 3.7.4-1 - 3.7.4-7

12. scraped surface, 3.5.2-9

13. short-tube vertical, 3.5.2-3

58. Falling film evaporator:

1. description of, 3.5.2-6 - 3.5.2-7

2. heat transfer coefficient in, 3.5.7-3

3. mass transfer in, 2.1.7-8

4. operational problems in, 3.18.5-3

5. as vaporizer, 3.6.1-7 - 3.6.1-8

59. Falling film plate evaporator, 3.7.4-6 - 3.7.4-7

60. Film boiling:

1. in axial flow reboilers, 3.6.2-9

2. in crossflow over single cylinder, 2.7.5-5

3. in forced convective boiling on vertical surfaces, 2.7.3-38 - 2.7.3-39

1. vertical flat plate, 2.7.3-39

2. vertical rod, 2.7.3-39

4. in kettle reboilers, 3.6.2-5 - 3.6.2-7

5. in pool boiling, 2.7.2-18 - 2.7.2-20

6. in tube bundles, 2.7.5-11

61. Film cooler, approximate overall heat transfer coefficients in, 2.1.2-4

62. Film model, condenser design by 2.6.3-17

63. Film model, condenser design by 2.6.4-8 - 2.6.4-13

64. Film temperature, definition of for turbulent flow over flat plate, 2.2.1-34

65. Film-type direct-contact condensers 3.20.1-3

1. condensation on a film flowing over a sphere, 3.20.3-1 - 3.20.3-3

2. effect of noncondensables in, 3.20.3-3 - 3.20.3-4

3. packed-bed condenser, 3.20.1-3

4. volumetric heat transfer coefficients in packed bed type, 3.20.3-3

66. Film-type direct-contact condensers 3.20.3-1 - 3.20.3-5

67. Films in heat exchangers, 1.1.4-2

68. Filmwise condensation:

1. description of, 2.6.1-1

2. of pure vapors, 2.6.2-1 - 2.6.2-19

1. inside horizontal tubes, 2.6.2-12 - 2.6.2-15

2. outside horizontal tubes, 2.6.2-8 - 2.6.2-12

3. interfacial resistance in, 2.6.2-14

4. with liquid metals, 2.6.2-15 - 2.6.2-16

5. on vertical surfaces 2.6.2-2

6. on vertical surfaces 2.6.2-9

69. Flash evaporation 3.5.3-2

1. in Ocean Thermal Energy Conversion (OTEC), 3.22.3-9 - 3.22.3-12

2. #%common_industrial_applications%#, 3.22.1-2 - 3.22.1-3

3. mathematical models for, 3.22.2-34 - 3.22.2-50

1. multistage flash with brine recirculation (MSF), 3.22.2-45 - 3.22.2-50

2. multistage flash, once thorugh (MSF-OT), 3.22.2-40 - 3.22.2-45

3. single stage flash (SSF), 3.22.2-34 - 3.22.2-40

4. multistage flashing, stage in, 3.22.2-7 - 3.22.2-54

1. condenser/preheater tubes in, 3.22.2-8 - 3.22.2-11

2. interstage brine transfer devices for, 3.22.2-30 - 3.22.2-34

3. venting and steam ejectors in, 3.22.2-11 - 3.22.2-23

4. wire mesh demisters for, 3.22.2-23 - 3.22.2-30

5. nature of, 3.22.1-1 - 3.22.1-2

6. processes in, 3.22.2-1 - 3.22.2-54

1. multistage flashing with brine recirculation (MSF), 3.22.2-5 - 3.22.2-7

2. once through multistage flashing (MST-OT), 3.22.2-4 - 3.22.2-5

3. single stage flashing (SSF), 3.22.2-2 - 3.22.2-4

70. Flash evaporation 3.22.1-1 - 3.22.3-20

71. Flooding phenomena:

1. in gas-liquid flow in vertical tubes, 2.3.2-21 - 2.3.2-23

2. in reflux condensation 2.6.2-7 - 2.6.2-9

3. in reflux condensation 3.4.3-2 - 3.4.3-3

4. Pushkina and Sorokin correlation for, 2.3.2-22

5. as source of critical heat flux limitation in countercurrent flow:

1. in tube banks, 2.7.5-10

2. in tubes, 2.7.3-33 - 2.7.3-34

6. Wallis correlation for 2.3.2-22

7. Wallis correlation for 2.6.2-8

72. Florschuetz and Chao method, for bubble collapse in bubble-type direct-contact condenser, 3.20.4-2

73. Flow distribution:

1. in air-cooled heat exchangers, 3.18.3-3 - 3.18.3-4

1. air side, 3.18.3-3 - 3.18.3-4

2. process side, 3.18.3-3

2. in cooling towers, 3.18.6-1 - 3.18.6-2

1. air distribution, 3.18.6-1 - 3.18.6-2

2. water distribution, 3.18.6-1

74. Flow regimes:

1. in boiling outside single horizontal tubes, 2.7.5-1

2. in boiling in horizontal tubes, 2.7.4-1 - 2.7.4-4

3. in combined free and forced convection in pipes 2.5.10-3

4. in combined free and forced convection in pipes 2.5.10-30

5. in combined free and forced convection around immersed bodies, 2.5.9-1 - 2.5.9-4

6. in condensation-forming immiscible liquids, 2.6.4-2

7. in fluidized beds 2.2.6-1

8. in fluidized beds 2.2.6-2

9. in gas-liquid flow, 2.3.2-1 - 2.3.2-7

1. horizontal tubes, 2.3.2-2 - 2.3.2-4

2. in microchannels 2.13.4-4 - 2.13.4-6

3. in microchannels 2.13.5-5 - 2.13.5-12

4. in microchannels 2.13.6-2 - 2.13.6-5

5. inclined tubes, 2.3.2-4 - 2.3.2-5

6. shell-and-tube heat exchangers 2.3.2-5 - 2.3.2-6

7. shell-and-tube heat exchangers 3.4.7-2

8. systems with phase change 2.3.2-6 - 2.3.2-7

9. systems with phase change 2.13.4-4 - 2.13.4-6

10. systems with phase change 2.13.6-2 - 2.13.6-5

11. vertical tubes, 2.3.2-1 - 2.3.2-2

10. influence of free convection on, in horizontal pipe flow, 2.2.2-6

11. in liquid-liquid flow 2.3.5-1 - 2.3.5-7

1. horizontal tubes, 2.3.5-1 - 2.3.5-4

2. transition of, 2.3.5-24 - 2.3.5-29

3. vertical and inclined tubes, 2.3.5-4 - 2.3.5-7

12. in liquid-liquid flow 2.3.5-24 - 2.3.5-29

13. in liquid-liquid-gas flow, 2.3.6-1 - 2.3.6-4

14. in natural convection in enclosures, 2.5.8-6 - 2.5.8-8

15. in single-phase flow in tube banks, 2.2.4-1 - 2.2.4-3

16. in single-phase flow over immersed bodies:

1. boundary layer regime, 2.2.3-1 - 2.2.3-2

2. over circular cylinders, 2.2.3-3

3. over noncircular cylinders, 2.2.3-6 - 2.2.3-7

17. in solid-gas flow, 2.3.3-2

75. Fluidized bed dryer:

1. description, 3.13.2-4

2. practical design, 3.13.7-2

76. Fluidized bed gravity conveyors, 2.3.3-7 - 2.3.3-9

77. Fluidized beds:

1. bed-to-solid surface heat transfer in, 2.8.4-1 - 2.8.4-14

1. influence of bed voidage or gas velocity, 2.8.4-9

2. influence of gas properties, 2.8.4-7

3. influence of particle properties, 2.8.4-5 - 2.8.4-7

4. influence of temperature and pressure, 2.8.4-7 - 2.8.4-9

5. interphase gas convective component, 2.8.4-3

6. particle convective component, 2.8.4-3 - 2.8.4-4

7. predictive methods for, 2.8.4-4 - 2.8.4-6

8. radiative component, 2.8.4-4 - 2.8.4-5

2. fluid-to-particle heat transfer in, 2.5.5-1 - 2.5.5-6

1. introduction, 2.5.5-1 - 2.5.5-2

2. low Peclet numbers, 2.5.2-3 - 2.5.2-6

3. recommended equations, 2.5.5-2 - 2.5.5-3

3. fouling in, 3.17.7-22 - 3.17.7-23

4. single-phase fluid flow and pressure drop in, 2.2.6-1 - 2.2.6-22

1. bubble behaviour in, 2.2.6-8 - 2.2.6-12

2. circulating fluidized beds, 2.2.6-13 - 2.2.6-21

3. distributor effects in, 2.2.6-12 - 2.2.6-13

4. gas-solids fluidized beds, 2.2.6-7 - 2.2.6-20

5. liquid fluidized beds, 2.2.6-6 - 2.2.6-7

6. minimum fluidization velocity, 2.2.6-3 - 2.2.6-5

7. powder type in, 2.2.6-7 - 2.2.6-8

8. pressure drop, 2.2.6-2 - 2.2.6-3

9. solids circulation in, 2.2.6-11 - 2.2.6-12

10. state diagram for, 2.2.6-5 - 2.2.6-6

11. terminal free-fall velocity, 2.2.6-5

12. types of fluidization, 2.2.6-1 - 2.2.6-2

78. Fluids:

1. physical properties:

1. mixtures of fluids 5.2.1-1 - 5.2.5-5

2. mixtures of fluids 5.2.7-1 - 5.2.7-9

79. Fogging in condensation 2.6.7-1 - 2.6.7-4

1. design to minimize 2.6.7-3

2. design to minimize 3.4.5-2

3. effects of 2.6.7-3

4. effects of 3.4.5-2

5. nuclei formation, 2.6.7-1 - 2.6.7-2

6. supersaturation, 2.6.7-1 - 2.6.7-3

80. Fogging in condensation 3.4.5-2

81. Forced flow reboilers:

1. characteristics, advantages, and disadvantages of 3.6.1-6 - 3.6.1-7

2. heat transfer characteristics of, 3.6.2-8 - 3.6.2-12

82. Foam systems, heat transfer in, 2.12.1-1 - 2.12.2-9

1. bubble size in, 2.12.1-4 - 2.12.1-5

2. dynamically stable foam, 2.12.1-1

3. pressure drop in, 2.12.1-3 - 2.12.1-4

4. statically stable foam, 2.12.1-1

1. heat transfer to in tubes and tube banks, 2.12.2-1 - 2.12.2-9

2. relationship between heat flux and temperature difference for, 2.12.2-1 - 2.12.2-2

3. usage range of, 2.12.2-2 - 2.12.2-3

5. void fraction in, 2.12.1-2 - 2.12.1-3

83. Four phase flows, examples, 2.3.1-2

84. Friction multipliers in gas-liquid flow:

1. correlation for: in singularities, 2.3.2-15 - 2.3.2-18

1. in straight channels, 2.3.2-9 - 2.3.2-12

85. Gas-liquid flows:

1. applications of one-dimensional equations, 2.3.2-7 - 2.3.2-18

1. conservation equations, 2.3.2-8 - 2.3.2-9

2. correlation for void fraction, 2.3.2-13 - 2.3.2-15

3. frictional pressure drop in straight channels, 2.3.2-9 - 2.3.2-12

4. pressure changes across singularities, 2.3.2-15 - 2.3.2-18

5. pressure drop in heat exchangers, 2.3.2-12 - 2.3.2-13

2. critical two-phase flow, 2.3.2-26 - 2.3.2-29

3. flow patterns in, 2.3.2-1 - 2.3.2-7

1. horizontal tubes, 2.3.2-2 - 2.3.2-4

2. shell-and-tube heat exchangers, 2.3.2-5 - 2.3.2-6

3. in systems with phase change, 2.3.2-6 - 2.3.2-7

4. inclined tubes, 2.3.2-4 - 2.3.2-5

5. vertical tubes, 2.3.2-1 - 2.3.2-2

4. hydrodynamics of specific flow regimes (horizontal), 2.3.2-23 - 2.3.2-26

1. annular flow, 2.3.2-25 - 2.3.2-26

2. slug flow, 2.3.2-24 - 2.3.2-25

3. stratified flow, 2.3.2-23 - 2.3.2-24

5. hydrodynamics of specific flow regimes (vertical), 2.3.2-18 - 2.3.2-23

1. annular flow, 2.3.2-19 - 2.3.2-21

2. bubble flow, 2.3.2-18 - 2.3.2-19

3. countercurrent flow and flooding, 2.3.2-21 - 2.3.2-23

4. plug-slug flow, 2.3.2-19

6. in microchannels, 2.13.5-1 - 2.13.5-20

1. flow patterns in, 2.13.5-5 - 2.13.5-12

2. in boiling in, 2.13.4-4 - 2.13.4-6

3. phase inlet configuration for studies of, 2.13.5-2 - 2.13.5-4

4. pressure drop in, 2.13.5-14 - 2.13.5-17

5. void fraction in, 2.13.5-12 - 2.13.5-14

7. in plate heat exchangers, 3.7.3-5

86. Gas-liquid-solid interfaces, fouling at, 3.17.2-14

87. Heat and mass transfer:

88. Heat exchangers:

1. condensers, 3.4.1-1 - 3.4.9-5

2. gas-liquid pressure drop in, 2.3.2-12 - 2.3.2-13

89. Heat of vaporisation (see Enthalpy of vaporisation), of pure substances 5.5.1-1 - 5.5.1-178

90. Heat of vaporisation (see Enthalpy of vaporisation), of pure substances 5.5.10-1 - 5.5.10-175

91. Heat transfer:

92. Heat transfer coefficient:

1. in boiling in a vertical tube, 2.7.3-1 - 2.7.3-50

2. in boiling in horizontal tubes, bends, and coils, 2.7.4-1 - 2.7.4-12

3. in boiling in microchannels, 2.13.4-1 - 2.13.4-27

1. flow boiling, 2.13.4-6 - 2.13.4-13

2. models for, 2.13.4-13 - 2.13.4-14

4. in boiling of binary and multicomponent mixtures: forced convective, 2.7.8-1 - 2.7.8-10

1. pool boiling, 2.7.7-1 - 2.7.7-7

5. in boiling on outside of single tubes and tube banks 2.7.5-1 - 2.7.5-7

6. in condensation, 2.6.1-2

7. in pool boiling, 2.7.2-1 - 2.7.2-24

8. in reboilers, 3.6.2-1 - 3.6.2-12

93. Heat transfer regimes:

1. in boiling in a vertical tube, 2.7.3-2

94. Heat of vaporization, 5.1.3-4 - 5.1.3-7

1. of commonly used fluids, 5.5.1-1 - 5.5.1-178

95. Helical coils of circular cross section:

1. augmentation of condensation heat transfer using, 2.6.6-23

2. convective boiling in, 2.7.4-9 - 2.7.4-10

3. dryout in evaporative heat transfer in, 2.7.4-9 - 2.7.4-10

96. Homogeneous model:

1. in gas-liquid flows: conservation equations, 2.3.2-8

1. critical flow estimation by, 2.3.2-28

2. frictional pressure drop correlations based on, 2.3.2-10

3. pressure drop in singularities calculated by, 2.3.2-15 - 2.3.2-18

97. Homogeneous nucleation:

1. of droplets in supersaturated vapor, 2.6.7-1 - 2.6.7-2

2. of vapor bubbles in liquids, 2.7.1-3 - 2.7.1-4

98. Honeycombs:

99. Horizontal condensers:

1. turbine exhaust, 3.4.3-3 - 3.4.3-8

100. Horizontal pipes:

101. Horizontal surfaces:

1. pool boiling from, 2.7.2-1 - 2.7.2-24

102. Horizontal thermosiphon reboilers:

103. Horizontal tube-side evaporator, 3.5.2-7 - 3.5.2-8

104. Horizontal tubes:

1. boiling outside with crossflow, 2.7.5-1 - 2.7.5-4

2. condensation on inside 2.6.2-12 - 2.6.2-15

3. condensation on inside 3.4.6-1 - 3.4.6-2

4. condensation on outside of 2.6.2-8 - 2.6.2-12

1. effect of vapor shear, single tube, 2.6.2-8 - 2.6.2-9

5. condensation on outside of 3.4.6-3

6. convective boiling in, 2.7.4-1 - 2.7.4-8

1. critical heat flux in, 2.7.4-7 - 2.7.4-8

2. flow patterns in, 2.7.4-1 - 2.7.4-4

3. heat transfer coefficients in, 2.7.4-4 - 2.7.4-5

7. flow regimes in gas-liquid flow in, 2.3.2-2 - 2.3.2-4

8. hydrodynamics of various two-phase flow regimes in, 2.3.2-23 - 2.3.2-26

1. annular flow, 2.3.2-25 - 2.3.2-26

2. slug flow, 2.3.2-24 - 2.3.2-25

3. stratified flow, 2.3.2-23 - 2.3.2-24

9. pool boiling from, 2.7.2-1 - 2.7.2-24

10. types of waste heat boilers, 3.16.2-3

105. Immersed tubes, in fluidized beds, heat transfer to, 2.8.4-6 - 2.8.4-7

106. Immiscible liquids, condensation of vapors producing 2.6.4-1 - 2.6.4-16

1. film method for, 2.6.4-8 - 2.6.4-13

1. azeotropic condensation, 2.6.4-9

2. binary mixtures, 2.6.4-8 - 2.6.4-9

107. Impinging jets:

1. average coefficients in, 2.5.6-3 - 2.5.6-4

108. Inclined pipes:

1. flow regimes in gas-liquid flow in, 2.3.2-4 - 2.3.2-5

109. Jens and Lottes correlation for subcooled forced convective boiling of water, 2.7.3-8

110. Kandlikar correlation, for forced convective boiling, 2.7.3-16

111. Katto and Ohne correlation, for critical heat flux in forced convective boiling, 2.7.3-35 - 2.7.3-36

112. Kettle reboilers:

1. calculation procedures for, 3.6.5-1 - 3.6.5-2

2. characteristics, advantages, and disadvantages of, 3.6.1-2 - 3.6.1-3

3. construction features, 4.2.3-7 - 4.2.3-8

4. thermal design 2.7.5-8 - 2.7.5-9

1. convection effects, 3.6.2-3 - 3.6.2-4

2. critical heat flux and film boiling, 3.6.2-8

3. effective mean temperature difference, 3.6.2-5

4. finned tubes in, 3.6.2-8

5. flow distribution and hydraulics, 3.6.2-7 - 3.6.2-8

6. mixture effects, 3.6.2-4 - 3.6.2-5

7. single tube nucleate boiling, 3.6.2-1 - 3.6.2-3

8. vapor-liquid disengagement in, 3.6.2-7 - 3.6.2-8

5. thermal design 3.6.2-1 - 3.6.2-7

113. Laminar flow:

1. condensation in vertical surfaces, 2.6.2-2 - 2.6.2-4

114. Liquid-liquid-gas flow, 2.3.6-1 - 2.3.6-10

1. annular flow in 2.3.6-3

2. bubbly flow in, 2.3.6-3

3. flow patterns in, 2.3.6-1 - 2.3.6-4

4. homogeneous model for, 2.3.6-8 - 2.3.6-9

5. phase inversion in, 2.3.6-9

6. slug flow in

1. characteristics of, 2.3.6-2 - 2.3.6-3

2. pressure drop in, 2.3.6-8

3. slug frequencies in, 2.3.6-7 - 2.3.6-8

4. transition from stratified to, 2.3.6-1 - 2.3.6-2

7. stratified flow in

1. characteristics of, 2.3.6-1

2. interfacial friction in, 2.3.6-4 - 2.3.6-5

3. models for, 2.3.6-3 - 2.3.6-6

115. Liquids:

1. as constituent in multiphase flows, 2.3.1-1 - 2.3.1-2

116. Lockhart and Martinelli correlations:

1. for frictional pressure gradient, 2.3.2-10

2. for void fraction, 2.3.2-17

117. Lost work in unit operations/exergy analysis, 1.9.5-1 - 1.9.5-11

1. in distillation column, 1.9.5-8 - 1.9.5-10

118. Low-finned tubes:

1. use in boiling augmentation, 2.7.9-27 - 2.7.9-30

2. use in condensation augmentation, 2.6.6-15 - 2.6.6-17

3. use in condensation augmentation, 2.6.6-9 - 2.6.6-12

119. Martinelli and Nelson correlations:

1. for frictional pressure gradient, 2.3.2-10 - 2.3.2-11

2. for void fraction, 2.3.2-14

120. Mass transfer:

1. in cooling towers, 3.12.2-2 - 3.12.2-5

2. in condensation: in mixtures, 2.6.3-7 - 2.6.3-25

1. of single vapor with noncondensables, 2.6.3-8

3. with impinging jets, 2.5.6-1 - 2.5.6-10

121. Maximum heat flux:

1. by conduction in solids, 2.1.1-2

2. in condensation, 2.1.7-4 - 2.1.7-6

3. under free molecule conditions in gases, 2.1.1-2

122. Maximum mass flux:

1. in condensation, 2.1.7-4 - 2.1.7-6

123. Mean temperature difference:

1. in condensers, 3.4.8-1 - 3.4.8-3

124. Mechanical design of heat exchangers:

1. EN13445 guidelines for, 4.3.3-1 - 4.3.3-25

2. waste heat boilers, 3.16.3-1

125. Melting, thermal conduction in, 2.4.4-1 - 2.4.4-2

126. Melting point:

1. estimation of, 5.1.3-8 - 5.1.3-9

2. of commonly used substances, 5.5.1-1 - 5.5.1-178

127. Membrane-wall waste heat boilers, 3.16.2-3 - 3.16.2-4

128. Metals:

1. condensation, 2.6.2-15 - 2.6.2-16

129. Minimum velocity for fluidization, 2.2.6-3 - 2.2.6-5

130. Minimum wetting rate, for binary mixtures, 2.7.8-11

131. Mist flow:

1. in axial flow reboilers, 3.6.2-12

2. onset, as mechanism for critical heat flux in reboilers, 3.6.2-10 - 3.6.2-12

132. Mixtures:

1. condensers for, 3.4.4-2 - 3.4.4-3

133. Molecular dynamics methods, 2.13.7-1 - 2.13.7-33

134. Mollier chart, for humid air, 3.13.1-1

1. description of drying processes in terms of, 3.13.3-4 - 3.13.3-5

135. Momentum equation:

1. in gas-liquid flows, 2.3.2-8 - 2.3.2-9

1. separated flow model, 2.3.2-8 - 2.3.2-9

2. in multiphase flows: homogeneous flow, 2.3.1-5

1. separated flow, 2.3.1-7

136. Multicomponent mixtures:

1. boiling of, in kettle reboilers, 3.6.2-4 - 3.6.2-5

2. boiling of, in evaporators, 3.5.7-4 - 3.5.7-5

3. forced convective boiling of, 2.7.8-1 - 2.7.8-14

1. combined heat and mass transfer in, 2.7.8-2 - 2.7.8-9

2. critical heat flux in, 2.7.8-9 - 2.7.8-11

3. maldistribution effects in, 2.7.8-5 - 2.7.8-9

4. saturated nucleate, 2.7.8-1 - 2.7.8-2

5. two-phase forced convective, 2.7.8-2 - 2.7.8-11

4. of gases, radiation properties of, 2.9.5-11 - 2.9.5-12

5. phase equilibria in, 2.7.6-3 - 2.7.6-5

6. physical properties, 5.2.1-1 - 5.2.5-5

1. diffusion coefficients, 5.2.5-1 - 5.2.5-5

2. interfacial tension, 5.2.4-1 - 5.2.4-4

3. thermodynamic properties, 5.2.2-1 - 5.2.2-9

4. thermophysical properties, 5.2.3-1 - 5.2.3-9

7. pool boiling, 2.7.7-1 - 2.7.7-11

1. critical heat flux, 2.7.7-6 - 2.7.7-8

2. film boiling, 2.7.7-8 - 2.7.7-9

3. minimum heat flux, 2.7.7-8

4. nucleate boiling, 2.7.7-1 - 2.7.7-6

5. transition boiling, 2.7.7-8

137. Multiphase fluid flow and pressure drop:

1. introduction and fundamentals, 2.3.1-1 - 2.3.1-10

1. classification of multiphase flows, 2.3.1-1 - 2.3.1-2

2. conservation equations for, 2.3.1-3 - 2.3.1-7

3. design parameters in, 2.3.1-2 - 2.3.1-3

4. drift flux models for, 2.3.1-7 - 2.3.1-10

2. liquid-liquid-gas flow, 2.3.6-1 - 2.3.6-10

1. annular flow in, 2.3.6-3

2. bubbly flow in, 2.3.6-3

3. flow patterns in, 2.3.6-1 - 2.3.6-4

4. homogeneous model for, 2.3.6-8 - 2.3.6-9

5. phase inversion in, 2.3.6-9

6. slug flow in 2.3.6-1 - 2.3.6-3

7. slug flow in 2.3.6-7 - 2.3.6-8

8. stratified flow in 2.3.6-1

9. stratified flow in 2.3.6-4 - 2.3.6-6

3. liquid-liquid flow, 2.3.5-1 - 2.3.5-40

1. core annular, 2.3.5-10 - 2.3.5-14

2. dispersed, 2.3.5-14 - 2.3.5-24

3. flow patterns, 2.3.5-1 - 2.3.5-7

4. stratified, 2.3.5-7 - 2.3.5-10

4. solid-gas flow, 2.3.3-1 - 2.3.3-10

1. flow patterns in, 2.3.3-2

2. pressure drop in 2.3.3-2

3. pressure drop in 2.3.3-4 - 2.3.3-8

4. principles of pneumatic conveyance, 2.3.3-1 - 2.3.3-2

5. solid-liquid flow, 2.3.4-1 - 2.3.4-7

1. flow regimes in, 2.3.4-1 - 2.3.4-2

2. pressure drop in, 2.3.4-3 - 2.3.4-6

138. Multiple effect evaporation, 3.5.3-1 - 3.5.3-2

1. in plate evaporators, 3.7.4-2 - 3.7.4-3

139. Multistage flash evaporation (MSF)

1. brine transfer devices in, 3.22.2-30 - 3.22.2-34

2. condenser/preheater tubes in, 3.22.2-8 - 3.22.2-11

1. heat transfer equations for, 3.22.2-9 - 3.22.2-11

2. tube configurations for, 3.22.2-9

3. tube materials for, 3.22.2-8 - 3.22.2-9

3. ejectors for, 3.22.2-14 - 3.22.2-23

1. fundamentals of, 3.22.2-14 - 3.22.2-15

2. models for, 3.22.2-15 - 3.22.2-23

4. mathematical models for

1. once through (MSF-OT), 3.22.2-40 - 3.22.2-45

2. with brine recirculation (MSF), 3.22.2-45 - 3.22.2-50

5. processes in:

1. once through (MSF-OT), 3.22.2-4 - 3.22.2-5

2. with brine recirculation (MSF), 3.22.2-5 - 3.22.2-7

6. venting systems for, 3.22.2-11 - 3.22.2-14

1. design of vent line orifice, 3.22.2-12 - 3.22.2-14

7. wire mesh demisters for, 3.22.2-23 - 3.22.2-30

140. Natural convection:

1. in porous media, 2.11.5-1 - 2.11.6-9

141. Nitric oxide:

1. superheated vapor properties, 5.5.11-160

142. Nomenclature, xxxiiixl

143. Noncondensables:

1. in boiling, 2.7.2-11

2. in condensation 2.1.6-2

3. in condensation 2.6.1-2

4. in condensation 2.6.3-5 - 2.6.3-7

5. in condensation 2.6.4-5 - 2.6.4-6

6. in condensation 2.6.5-2

7. effect in direct-contact condensers, 3.20.4-2

144. Nonuniform heat flux, critical heat flux with, 2.7.3-23 - 2.7.3-25

145. Nozzles:

1. impinging jets from, heat transfer in, 2.5.6-1 - 2.5.6-11

146. Nucleate boiling:

1. augmentation of, 2.7.9-1 - 2.7.9-40

2. in axial flow reboilers, 3.6.2-8 - 3.6.2-9

3. in evaporators, 3.5.7-3 - 3.5.7-4

4. in forced convective boiling of binary and multicomponent mixtures, 2.7.8-1 - 2.7.8-2

5. in forced convective heat transfer in vertical tubes, 2.7.3-1 - 2.7.3-17

6. in horizontal tubes, 2.7.4-1 - 2.7.4-8

7. in kettle reboilers, 3.6.2-1 - 3.6.2-4

8. in microchannels, 2.13.4-14 - 2.13.4-16

9. outside tubes and tube bundles in crossflow, 2.7.5-6 - 2.7.5-9

10. in pool boiling of binary and multicomponent mixtures, 2.7.7-1 - 2.7.7-4

11. in pool boiling systems, 2.7.2-3 - 2.7.2-13

1. correlations for, 2.7.2-4 - 2.7.2-10

2. hysteresis in, 2.7.2-12

3. influence of dissolved gases on, 2.7.2-11

4. influence of gravitational acceleration on, 2.7.2-12 - 2.7.2-13

5. influence of liquid subcooling on, 2.7.2-12

6. influence of size and orientation of surface on, 2.7.2-12

7. influence of surface conditions on, 2.7.2-10 - 2.7.2-11

8. influence of system pressure on, 2.7.2-10

9. influence of wettability of surface on, 2.7.2-10 - 2.7.2-11

147. Nucleation:

1. augmentation devices for, 2.7.9-1 - 2.7.9-40

2. in binary systems, 2.7.6-5 - 2.7.6-6

3. heterogeneous, in boiling, 2.7.1-5 - 2.7.1-7

1. simulation of using molecular dynamics, 2.13.7-21 - 2.13.7-22

4. homogeneous, of vapor bubble in liquid, 2.7.1-3 - 2.7.1-4

1. simulation of using molecular dynamics, 2.13.7-20 - 2.13.7-21

5. in supersaturated vapor, 2.6.7-1 - 2.6.7-2

6. problems of, in vaporizers, 3.18.5-1

148. Nucleation sites:

1. critical size for nucleation: in pool boiling, 2.7.2-2 - 2.7.2-3

1. in subcooled forced convective boiling, 2.7.3-7

2. size in binary mixtures, 2.7.6-5 - 2.7.6-7

3. sizing of active, 2.7.1-5 - 2.7.1-7

149. Nuclei, formation in supersaturated vapor, 2.6.7-1 - 2.6.7-2

150. Numerical methods:

151. Ocean Thermal Energy Conversion (OTEC), 3.22.3-1 - 3.22.3-20

1. closed cycle OTEC, 3.22.3-3 - 3.22.3-5

2. condensers for, 3.22.3-12 - 3.22.3-15

3. evaporators, for, 3.22.3-12 - 3.22.3-15

4. flash evaporation systems in, 3.22.3-9 - 3.22.3-12

1. orifice/weir flashing, 3.22.3-11 - 3.22.3-12

2. spray flashing, 3.22.3-10 - 3.22.3-11

5. hybrid cycle OTEC, 3.22.3-7 - 3.22.3-8

152. Once-through multistage flash evaporators, (MSF-OT)

1. processes in, 3.22.2-5

2. mathematical models for, 3.22.2-40 - 3.22.2-50

153. Operational problems:

1. of condensers, 3.4.5-1 - 3.4.5-3

154. Orifices:

1. two-phase gas liquid flow, 2.3.2-17 - 2.3.2-18

155. Packed-bed condensers, 3.20.1-3

156. Partial boiling in subcooled forced convective heat transfer, 2.7.3-9 - 2.7.3-10

157. Phase change heat transfer in porous media, 2.11.7-2

158. Phase change number, 2.4.4-1

159. Phase equilibrium:

1. in binary mixtures, 2.7.6-1 - 2.7.6-3

2. in multicomponent mixtures, 2.7.6-3 - 2.7.6-5

160. Phase inversion

1. in liquid-liquid flows, 2.3.5-19 - 2.3.5-20

2. in liquid-liquid-gas flows, 2.3.6-9

161. Phase separation, as source of corrosion problems, 4.5.3-5

162. Pipes, circular:

1. boiling of binary and multicomponent mixtures in, 2.7.8-1 - 2.7.8-14

1. critical heat flux, 2.7.8-9 - 2.7.8-11

2. nucleate boiling, 2.7.8-2 - 2.7.8-9

2. combined free and forced convection in, 2.5.10-1 - 2.5.10-49

1. in condensers, 3.4.1-1 - 3.4.9-5

3. flow boiling in: horizontal pipes, 2.7.4-1 - 2.7.4-10

1. vertical pipes, 2.7.3-1 - 2.7.3-50

4. heat transfer to, in fluidized beds, 2.8.4-6 - 2.8.4-7

5. two-phase gas-liquid flow in, 2.3.2-1 - 2.3.2-33

1. flow regimes in, 2.3.2-1 - 2.3.2-5

2. hydrodynamics of flow in, 2.3.2-7 - 2.3.2-26

6. use in shell-and-tube heat exchangers for single-phase flow, 3.3.1-1 - 3.3.11-5

163. Piping components:

1. gas-liquid flow and pressure drop in, 2.3.2-15 - 2.3.2-18

1. bends, 2.3.2-17

2. open valves, 2.3.2-18

3. orifice plates, 2.3.2-17 - 2.3.2-18

4. slow changes in cross section, 2.3.2-15 - 2.3.2-16

5. sudden contractions, 2.3.2-16 - 2.3.2-17

6. sudden enlargements, 2.3.2-16

164. Plate fin heat exchangers 1.1.4-2

1. augmentation of condensation in, 2.6.6-23

2. recent theory and data on vaporization and condensation in, 3.9.13-1 - 3.9.13-4

165. Plate fin heat exchangers 3.9.1-1 - 3.9.1-2

166. Plate heat exchangers:

1. condensing/boiling in, 3.7.3-5

167. Plate evaporator 3.5.2-9

1. advantages and limitations, 3.7.4-1 - 3.7.4-2

2. thermal configuration, 3.7.4-2 - 3.7.4-4

1. mechanical vapour recompression, 3.7.4-3 - 3.7.4-4

2. multiple effect plate evaporators, 3.7.4-2 - 3.7.4-3

3. thermo vapour recompression, 3.7.4-3

3. types of, 3.7.4-4 - 4.7.4-7

1. falling film, 3.7.4-7 - 3.7.4-7

2. rising film, 3.7.4-4 - 3.7.4-6

3. rising/falling film, 3.7.4-4 - 3.7.4-6

168. Plate evaporator 3.7.4-1 - 3.7.4-7

169. Plates:

1. direct-contact condensation on films flowing on, 3.20.3-1 - 3.20.3-3

170. Plug flow:

1. regions of occurrence: in horizontal flow, 2.3.2-2 - 2.3.2-4

1. in inclined tubes, 2.3.2-4 - 2.3.2-5

2. in systems with phase change, 2.3.2-6 - 2.3.2-7

3. in vertical flow, 2.3.2-1 - 2.3.2-2

2. in vertical channels, 2.3.2-19

1. bubble rise velocity in, 2.3.2-19

171. Plug flow model, for furnaces, 3.11.5-1 - 3.11.5-2

172. Pool boiling, 2.1.7-6 - 2.1.7-8

1. augmentation of heat transfer in, 2.7.9-1 - 2.7.9-10

2. of binary and multicomponent mixtures, 2.7.7-1 - 2.7.7-11

1. critical heat flux, 2.7.7-6 - 2.7.7-8

2. film boiling, 2.7.7-8 - 2.7.7-9

3. minimum heat flux, 2.7.7-8

4. nucleate boiling, 2.7.7-1 - 2.7.7-6

5. transition boiling, 2.7.7-8

3. boiling curve for, 2.7.2-1 - 2.7.2-2

4. critical heat flux in, 2.7.2-13 - 2.7.2-17

1. geometric effects on, 2.7.2-14

2. liquid viscosity effect on, 2.7.2-14 - 2.7.2-15

3. mechanisms of, 2.7.2-13 - 2.7.2-14

4. subcooling effects on, 2.7.2-16 - 2.7.2-17

5. surface condition effects on, 2.7.2-17

5. film boiling in, 2.7.2-19 - 2.7.2-20

6. minimum heat flux in, 2.7.2-18

7. nucleate boiling, 2.7.2-3 - 2.7.2-13

1. correlations, 2.7.2-4 - 2.7.2-10

2. hysteresis in, 2.7.2-12

3. influence of dissolved gas on, 2.7.2-11

4. influence of gravitational acceleration on, 2.7.2-12 - 2.7.2-13

5. influence of liquid subcooling on, 2.7.2-12

6. influence of size and orientation of surface on, 2.7.2-12

7. influence of surface conditions on, 2.7.2-10 - 2.7.2-11

8. influence of system pressure on, 2.7.2-10

9. influence of wettability of surface on, 2.7.2-10 - 2.7.2-11

8. onset of nucleate boiling in, 2.7.2-2 - 2.7.2-3

9. transition boiling in, 2.7.2-18

173. Porous media, heat transfer in, 2.11.1-1 - 2.11.7-4

174. Postdryout heat transfer:

1. correlations for in vertical tubes, 2.7.3-39 - 2.7.3-43

1. with departure from thermodynamic equilibrium, 2.7.3-41

2. empirical correlations, 2.7.3-39 - 2.7.3-41

3. semitheoretical, 2.7.3-41 - 2.7.3-43

2. in evaporators, 3.5.7-5

175. Potential functions, for use in molecular dynamics simulations, 2.13.7-2 - 2.13.7-10

1. effective pair potential for water, 2.13.7-4 - 2.13.7-5

2. embedded atom method for, 2.13.7-7 - 2.13.7-10

3. for larger molecules in liquid phase, 2.13.7-5 - 2.13.7-6

4. Leonard-Jones potential, 2.13.7-3 - 2.13.7-4

5. many-bodied, for carbon and silicon, 2.13.7-6 - 2.13.7-7

6. pair potential for solid metal, 2.13.7-7 - 2.13.7-10

176. Powders:

1. thermal conductivity under vacuum, 2.1.1-2

177. Prandtl number 1.2.3-4

1. of liquids below their boiling point, 5.5.10-1 - 5.5.10-175

2. of saturated vapors and liquids, 5.5.1-1 - 5.5.1-98

178. Prandtl number 2.1.3-3

179. Precipitation (crystallization) fouling, 3.17.2-1

180. Precipitation hardening, of stainless steels, 4.5.6-6

181. Precommissioning, of waste heat boilers, 3.16.4-1 - 3.16.4-2

1. cleaning during, 3.16.4-1 - 3.16.4-2

2. storage during, 3.16.4-2

182. Pressure drop:

1. in evaporators,/ 3.5.6-1 - 3.5.6-2

2. in fluidized beds, 2.2.6-2 - 2.2.6-3

3. in foam systems, 2.12.1-3 - 2.12.1-4

4. in gas-liquid flow, 2.3.2-7 - 2.3.2-18

1. frictional, in straight pipes, 2.3.2-9 - 2.3.2-12

2. in shell-and-tube heat exchangers, 2.3.2-12 - 2.3.2-13

3. in singularities, 2.3.2-15 - 2.3.2-18

4. in stratified flow, 2.3.2-23 - 2.3.2-24

5. in vertical annular flow, 2.3.2-19

5. in liquid-liquid-gas flow

1. homogeneous models for, 2.3.6-8 - 2.3.6-9

2. in slug flows, 2.3.6-8

6. in microchannels

1. in condensation in, 2.13.6-5 - 2.13.6-19

2. in evaporation in, 2.13.4-16 - 2.13.4-19

3. in gas-liquid two phase flow, 2.13.5-14 - 2.13.5-17

7. in multiphase systems, 2.3.1-1 - 2.3.1-10

8. in reboilers, 3.6.3-1

9. in regenerators, 3.15.0-4

10. in vertical tubes with subcooled boiling, 2.7.3-10 - 2.7.3-11

183. Promoters, in dropwise condensation, 2.6.5-1 - 2.6.5-2

184. Quality, in multiphase flows:

1. flow quality 1.2.1-1

2. flow quality 2.3.1-4

3. flow quality 2.7.3-1

4. static quality 1.2.1-1

5. static quality 2.3.1-4

185. Quench boilers, 3.16.2-5

1. double-tube type, 3.16.2-5

2. for ethylene plant, 3.16.2-5

3. ribbed tubesheet type, 3.16.2-5

186. Temperature distribution:

1. in condensation, 2.6.1-2

187. Thermal conductivity:

1. of multicomponent mixtures, 5.2.3-7 - 5.2.3-8

2. of porous media, 2.11.2-1

3. of saturated vapors and liquids, 5.5.1-1 - 5.5.1-178

188. Thermoexel surface, for enhancement of boiling, 2.7.9-2

189. Thermosiphon

1. as form of heat pipe, 3.10.1-1

2. in heat pipe heat exchangers, 3.10.8-1 - 3.10.8-2

190. Theta (Dimensionless temperature difference)1.5.1-4

191. Theta-NTU method:

1. application to single-pass counter and cocurrent flow exchangers 1.3.1-2 - 1.3.1-4

2. application to single-pass counter and cocurrent flow exchangers 1.5.2-1 - 1.5.2-2

3. for calculation of heat exchangers 1.2.4-5

4. for calculation of heat exchangers 1.5.2-1 - 1.5.3-16

5. charts and equations for heat exchanger design, 1.5.2-2 - 1.5.3-16

6. for counterflow, 1.5.2-2

7. for cross flow

1. both streams mixed, 1.5.3-3

2. four tube rows, four passes, unmixed, 1.5.3-10

3. four tube rows, one pass, unmixed, 1.5.3-7

4. four tube rows, two passes, mixed, 1.5.3-11

5. one tube row, unmixed, 1.5.3-4

6. three tube rows, one pass, unmixed, 1.5.3-6

7. three tube rows, three passes, unmixed, 1.5.3-9

8. two tube rows, one pass, unmixed, 1.5.3-5

9. two tube rows, two tube passes, unmixed, 1.5.3-8

8. E-shell with even number of passes, 1.5.2-5

1. five E-shells in series, 1.5.2-9

2. four E-shells in series, 1.5.2-8

3. six E-shells in series, 1.5.2-10

4. three E-shells in series, 1.5.2-7

5. two E-shells in series, 1.5.2-6

9. E-shell, three tube side passes, 1.5.2-12

10. G-shell, even number of tube passes, 1.5.2-16

11. J-shell, even number of tube passes, 1.5.2-14

12. J-shell, one tube pass, 1.5.2-13

13. single pass, co-current, 1.5.2-1 - 1.5.2-3

192. Three-phase flows:

1. classification, 2.3.1-2

2. gas-liquid-solid, 2.3.1-2

3. liquid-liquid-gas 2.3.1-2

1. annular flow in, 2.3.6-3

2. bubbly flow in, 2.3.6-3

3. flow patterns in, 2.3.6-1 - 2.3.6-4

4. homogeneous model for, 2.3.6-8 - 2.3.6-9

5. phase inversion in, 2.3.6-9

6. slug flow in 2.3.6-1 - 2.3.6-3

7. slug flow in 2.3.6-6 - 2.3.6-8

8. stratified flows in 2.3.6-1

9. stratified flows in 2.3.6-4 - 2.3.6-6

4. liquid-liquid-gas 2.3.6-1 - 2.3.6-10

5. solid-liquid-liquid, 2.3.1-2

193. Tong F-factor method, for critical heat flux with nonuniform heating, 2.7.3-24 - 2.7.3-25

194. Transition boiling:

1. in binary and forced convective boiling, 2.7.7-5

2. in forced convection over vertical surfaces, 2.7.3-30

3. in pool boiling, 2.7.2-13

195. Triple interface (gas/solid/liquid), 2.3.1-2

1. fouling at, 3.17.2-4

196. Tube banks, plain:

1. boiling on outside of tubes within, 2.7.5-5 - 2.7.5-11

1. critical heat flux in, 2.7.5-9 - 2.7.5-11

2. heat transfer coefficients in, 2.7.5-6 - 2.7.5-9

2. condensation in horizontal, 2.6.2-10 - 2.6.2-12

3. condensation in vertical, 2.6.2-2 - 2.6.2-10

4. flow-induced vibration in, 4.6.1-1 - 4.6.6-4

197. Turbine agitators:

1. axial flow, 3.14.2-2

2. disk, 3.14.2-1 - 3.14.2-2

3. flat blade, 3.14.2-1 - 3.14.2-2

4. glass-coated, 3.14.2-1

5. heat transfer in vessels agitated by, 3.14.3-1

6. pitched blade, 3.14.2-1

198. Turbine exhaust condensers:

1. air-cooled, 3.8.9-3

199. Turbines, lost work in

1. expansion turbine, 1.9.5-5 - 1.9.5-6

2. hydraulic turbine, 1.9.5-8

200. Turbulent flow:

201. Twisted tapes:

1. enhancement of boiling heat transfer by, 2.7.9-19 - 2.7.9-22

2. as inserts for augmentation of heat transfer, 2.5.11-4 - 2.5.11-5

3. in augmentation of condensation 2.6.6-21

4. in augmentation of condensation 2.6.6-25

202. Two-phase flows:

1. classification of, 2.3.1-2

2. liquid-liquid flows 2.3.1-2

3. liquid-liquid flows 2.3.5-1 - 2.3.5-40

4. numerical calculation of, 1.4.3-1

203. UNIFAC method, for estimation of thermodynamic properties of mixtures, 5.2.2-6 - 5.2.2-9

1. tables of constants for use with, 5.5.4-6 - 5.5.4-7

204. Uniform heat flux:

1. critical heat flux in vertical tubes with, 2.7.3-12 - 2.7.3-18

205. U-tube (vertical) waste heat boilers, 3.16.2-7 - 3.16.2-8

206. Vacuum condensers, air-cooled, 3.8.9-2 - 3.8.9-3

207. Vacuum equipment, operational problems of,

1. in condensers, 3.18.4-2

208. Vacuum operation, of reboilers, 3.6.4-3

209. Valves:

1. open, two-phase gas-liquid flow pressure losses in, 2.3.2-18

210. Vapor blanketing, as mechanism of critical heat flux, 2.7.3-27

1. in kettle reboilers, 3.6.2-5 - 3.6.2-7

2. as source of accelerated corrosion, 4.5.3-4

211. Vapor-liquid disengagement, in kettle reboilers, 3.6.2-7 - 3.6.2-8

212. Vapor-liquid separation, for evaporators, 3.5.4-1 - 3.5.4-2

213. Vapor mixtures, condensation of, 2.6.3-1 - 2.6.3-25

214. Vapor pressure, 5.1.3-1 - 5.1.3-4

1. Ambrose-Walton corresponding states method for, 5.1.3-3 - 5.1.3-4

2. Antoine equation for, 5.1.3-1

3. Gomez-Thodas method for, 5.1.3-2 - 5.1.3-3

4. Lee and Kesler equation for, 5.1.3-2

5. Two-reference fluid correlation for, 5.1.3-4

6. Wagner equation for, 5.1.3-1 - 5.1.3-2

215. Vapor recompression, in evaporation, 3.5.3-2

1. in plate evaporator systems

1. mechanical vapour recompression, 3.7.4-3 - 3.7.4-4

2. thermovapour recompression, 3.7.4-3

216. Vapor suppression, 3.20.4-4

217. Vaporization, choice of evaporator type for, 3.5.5-2

1. in plate-fin heat exchangers, 3.9.13-1 - 3.9.13-2

218. Vaporizer, double bundle, constructional features, 4.2.3-9

219. Vaporizers, operational problems of, 3.18.5-1 - 3.18.5-4

1. dryout and burnout, 3.18.5-2

2. foaming, 3.18.5-3

3. fouling, 3.18.5-2 - 3.18.5-3

4. loss of nucleation, 3.18.5-1

220. Vapors, saturation properties of, 5.5.1-1 - 5.5.1-98

221. Vapors, properties of superheated, 5.5.10-1 - 5.5.10-21

222. Velocity ratio (slip ratio):

1. in gas-liquid flow, 2.3.2-13

223. Venting of condensers 3.4.3-7 - 3.4.3-8

224. Venting of condensers 3.4.5-2

225. Vertical condensers:

1. in-tube, downflow, 3.4.3-1 - 3.4.3-2

2. in-tube, upflow, 3.4.3-2

3. in-tube, reflux, 3.4.3-2 - 3.4.3-3

4. outside tube, 3.4.3-6

226. Vertical pipes:

1. boiling in, 2.7.3-1 - 2.7.3-50

1. critical heat flux, 2.7.3-17 - 2.7.3-37

2. heat transfer in region where critical heat flux has been exceeded, 2.7.3-37 - 2.7.3-43

3. regimes of flow and heat transfer in, 2.7.3-1 - 2.7.3-6

4. saturated boiling, 2.7.3-11 - 2.7.3-17

5. subcooled boiling, 2.7.3-6 - 2.7.3-11

2. bubble flow in, 2.3.2-18 - 2.3.2-19

3. combined free and forced convective heat transfer in, 2.5.10-2 - 2.5.10-29

4. condensation in, 2.6.2-2 - 2.6.2-8

1. effect of interfacial shear, 2.6.2-5 - 2.6.2-7

2. effect of waves and turbulence, 2.6.2-4 - 2.6.2-5

3. laminar flow, 2.6.2-2 - 2.6.2-4

4. reflux condensation, 2.6.2-7 - 2.6.2-9

5. condensers with condensation inside, 3.4.3-1 - 3.4.3-3

1. downflow 3.4.3-1 - 3.4.3-2

2. downflow 3.4.9-2 - 3.4.9-3

3. upflow 3.4.3-2 - 3.4.3-3

4. upflow 3.4.9-3

6. condensers with condensation outside 3.4.3-6

7. condensers with condensation outside 3.4.9-4

8. flooding in: in gas-liquid vertical flow, 2.3.2-21 - 2.3.2-23

1. in reflux condensation, 2.6.2-7 - 2.6.2-9

9. flow regimes in gas-liquid flow in, 2.3.2-1 - 2.3.2-2

10. flow regimes in liquid-liquid flow in, 2.3.5-20 - 2.3.5-29

11. flow regimes in liquid-liquid flow in, 2.3.5-4 - 2.3.5-7

12. plug (or slug) flow in, 2.3.2-19

227. Vertical surfaces:

1. film boiling in forced convection on, 2.7.3-39

2. filmwise condensation on, 2.6.2-2 - 2.6.2-9

3. pool boiling from, 2.7.2-1 - 2.7.2-24

228. Vertical thermosiphon reboilers:

1. calculation procedures for, 3.6.5-3 - 3.6.5-4

2. heat transfer characteristics of, 3.6.2-8 - 3.6.2-13

1. convective and nucleate boiling, 3.6.2-9

2. film boiling in, 3.6.2-11 - 3.6.2-12

3. heat flux limitations in, 3.6.2-9 - 3.6.2-11

4. mist flow, 3.6.2-12

5. temperature profiles in, 3.6.2-12 - 3.6.2-13

3. shell-side characteristics, advantages, and disadvantages, 3.6.1-6

4. tube-side characteristics, advantages, and disadvantages, 3.6.1-5 - 3.6.1-6

229. Virial equation:

230. Viscosity:

1. liquid, effect on critical heat flux in pool boiling, 2.7.2-12

2. of multicomponent mixtures, 5.2.3-2 - 5.2.3-6

3. of saturated liquids and vapors, 5.5.1-1 - 5.5.1-178

231. Void fraction, 2.3.1-3

1. correlations for in gas-liquid flow, 2.3.2-13 - 2.3.2-15

1. CISE correlations for, 2.3.2-14 - 2.3.2-15

2. drift flux models for, 2.3.2-13 - 2.3.2-14

3. homogeneous, 2.3.2-13

4. Martinelli correlations for, 2.3.2-14

2. in foams, 2.12.1-2 - 2.12.1-3

3. in microchannels, 2.13.4-3 - 2.13.4-4

4. models for in gas-liquid flow:

1. horizontal stratified flow, 2.3.2-23 - 2.3.2-24

2. vertical bubble flow, 2.3.2-18 - 2.3.2-19

3. vertical plug flow, 2.3.2-19

5. in subcooled boiling, 2.7.3-9 - 2.7.3-10

232. Voidage, in fixed beds, definition, 2.2.5-1