A-to-Z Guide to Thermodynamics,
Heat & Mass Transfer, and Fluids Engineering
English Русский 中文 Português Español Français Deutsch About Editors Contact us Access Begell House
View in Semantic Map View in A-Z Index

Calculations by using the general Mie theory are rather complicated, even for the case of spherical particles, and the numerical results are often not simple for understanding. Fortunately, in some limiting cases, the scattering problem is simplified and it can be considered in terms of approximate theoretical models. A detailed discussion of various regimes of light scattering by homogeneous spherical particles has been presented by van de Hulst (1957). Following the recent monograph by Dombrovsky and Baillis (2010), we consider only the most important particular cases that appeared to be useful for analysis of the properties of disperse systems in numerous applications, namely, Rayleigh scattering, the Rayleigh-Gans scattering, geometrical optics approximation, and anomalous diffraction.

REFERENCES

Dombrovsky, L. A. and Baillis, D., Thermal Radiation in Disperse Systems: An Engineering Approach, Begell House, Redding, CT, and New York, 2010.

van de Hulst, H. C., Light Scattering by Small Particles, Wiley, Hoboken, NJ, 1957 (also Dover Publ., 1981).

References

  1. Dombrovsky, L. A. and Baillis, D., Thermal Radiation in Disperse Systems: An Engineering Approach, Begell House, Redding, CT, and New York, 2010.
  2. van de Hulst, H. C., Light Scattering by Small Particles, Wiley, Hoboken, NJ, 1957 (also Dover Publ., 1981).
Number of views: 27489 Article added: 7 September 2010 Article last modified: 3 January 2011 © Copyright 2010-3921 Back to top
A-Z Index Authors / Editors Semantic Map Visual Gallery Contribute Guest