关于热力学、热量传递和质量传递,以及流体工程的 A-Z 指南
中文 English Русский Português Español Français Deutsch 关于我们 编辑 联系我们 访问 Begell House
View in A-Z Index
浏览次数:
15569

In the analysis of decay processes, an empirical function f(x) is approximated on a real interval [a, b] by a finite sum of the from

where αν and βν are real numbers. This is a problem in nonlinear approximation theory. For a fixed integer n > 1 , the unit interval [0, 1] is considered with an equidistant partition of length l/2n;

If, at these 2n + 1 points, the values of the function to be approximated are known, then f(xk) = fk(k = 0, 1, ..., 2n) and the following system of nonlinear equations is obtained:

(1)

where λ accounts for the maximum error in the approximation. Since xk = k/2n, then zν = eβν/2n and Eq. (1) can be written as:

(2)

The nonlinear Eq. (2) for the unknowns αν, zν (σ = 1, ..., n) and λ (note that βν = 2n ln zν) can then be solved. The Newton iteration method is applied to improve on this first approximation.

REFERENCES

Braess, D. (1986) Nonlinear Approximation Theory, VI. Springer-Verlag, Berlin.

Meinardus, G. (1967) Approximation of Functions: Theory and Numerical Methods, 10. Springer-Verlag, Berlin. DOI: 10.1016/S0016-0032(68)90588-7

References

  1. Braess, D. (1986) Nonlinear Approximation Theory, VI. Springer-Verlag, Berlin.
  2. Meinardus, G. (1967) Approximation of Functions: Theory and Numerical Methods, 10. Springer-Verlag, Berlin. DOI: 10.1016/S0016-0032(68)90588-7
返回顶部 © Copyright 2010-2022
A-Z 索引 作者/编辑 语义地图 视觉画廊 贡献 Guest