关于热力学、热量传递和质量传递,以及流体工程的 A-Z 指南
中文 English Русский Português Español Français Deutsch 关于我们 编辑 联系我们 访问 Begell House
View in A-Z Index
浏览次数:
32738

An error function is defined by the integral

(1)

and it occurs frequently in engineering problems; e.g., in heat conduction problems. The error function represents the area under the Gaussian function from t = 0 to t = x, so that erf ∞ = 1. The complementary error function is:

(2)

The error function erf x is a monotonically increasing odd function of x; i.e., erf (–x) = –erf x and erf x1 ≤ erf x2 whenever x1 ≤ x2. Its Maclaurin series (for small x) is given by:

(3)

and for large values of x, the asymptotic expansion is:

(4)

where erf x may be approximated as

(5)

There exist extensive tabulations of erf x [see Abramowitz and Stegun (1965), for example].

REFERENCES

Abramowitz, M. and Stegun, I. (1965) Handbook of Mathematical Functions, Dover Publications, New York.

References

  1. Abramowitz, M. and Stegun, I. (1965) Handbook of Mathematical Functions, Dover Publications, New York. DOI: 10.1119/1.1972842
返回顶部 © Copyright 2010-2022
A-Z 索引 作者/编辑 语义地图 视觉画廊 贡献 Guest