A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Thermal microwave radiation of disperse systems on sea surface

DOI: 10.1615/thermopedia.000176


Thermal Microwave Radiation of Disperse Systems on the Sea Surface

Following from: Radiative transfer problems in nature and engineering

The theoretical models for thermal radiation of various disperse systems considered in the book are general and can be employed in both the visible and infrared spectral ranges. The rigorous electromagnetic scattering theory for single particles is universal and the Mie solution for spherical particles is used in the radio-wave range, too (see the articles, Radiative properties of metal particles in microwave spectral range and Water droplets and bubbles in microwave spectral range). The radiation transfer theory also does not have any wavelength restrictions. At the same time, application of the radiation transfer theory in the radio-wave range is accompanied by the following principal difficulties:

  • As a rule, the collective effects due to coherent scattering by ...

Чтобы просмотреть полный текст статьи, нужно оформить подписку.

Если Вы уже зарегистрированы, войдите здесь
Если Вы хотите зарегистрироваться на THERMOPEDIA™, перейдите по ссылке.

References

  1. Basharinov, A. E., Gurvich, A. S., and Egorov, S. T., Radioemission of the Earth as a Planet, Moscow: Nauka (in Russian), 1974.
  2. Bezzabotnov, V. S., Bortkovsky, R. S., and Timanovsky, D. F., On the structure of two-phase medium generated at wind-wave breaking, Izv., Atmos. Oceanic Phys., vol. 22, no. 11, pp. 1186-1193, 1986.
  3. Bordonskii, G. S., Vasil’kova, I. B., Veselov, V. M., Vorsin, N. N., Militskii, Yu. A., Mirovskii, V. G., Nikitin, V. V., Raizer, V. Yu., Khapin, Yu. B., Sharkov, E. A., and Etkin, V. S., Spectral characteristics of the microwave emissivity of foam structures, Izv., Atmos. Oceanic Phys., vol. 14, no. 6, pp. 464-469, 1978.
  4. Bortkovsky, R. S. and Timanovsky, D. F., On the microstructure of wind-waves breaking crests, Izv., Atmos. Oceanic Phys., vol. 18, no. 3, pp. 327-329, 1982.
  5. Bortkovsky, R. S., Heat- and Moisture Transfer between Atmosphere and Ocean at Storm Conditions, Leningrad: Hydrometeoizdat (in Russian), 1983.
  6. Camps, A., Vall-Ilossera, M., Villarino, R., Reul, N., Chapron, B., Corbella, I., Duffo, N., Torres, F., Miranda, J., Sabia, R., Monerris, A., and Rodrigues, R., The emissivity of foam-covered water surface at L-band: Theoretical modeling and experimental results from the FROG 2003 field experiment, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 5, pp. 925-937, 2005.
  7. Chen, D., Tsang, L., Zhou, L., Reising, S. C., Asher, W. E., Rose, L. A., Ding, K.-H., and Chen, C.-T., Microwave emission and scattering of foam based on Monte Carlo simulations of dense media, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 4, pp. 782-790, 2003.
  8. Cherny, I. V. and Sharkov, E. A., Remote radiometry of the sea wave breaking cycle, Earth Explor. Space, vol. 2, pp. 17-28 (in Russian), 1988.
  9. Cherny, I. V. and Raizer, V. Y., Passive Microwave Remote Sensing of Oceans, New York: Wiley, 1998.
  10. Dombrovsky, L. A., Calculation of the thermal radiation emission of foam on the sea surface, Izv., Atmos. Oceanic Phys., vol. 15, no. 3, pp. 193-198, 1979.
  11. Dombrovsky, L. A., Radiation Heat Transfer in Disperse Systems, New York: Begell House, 1996.
  12. Dombrovsky, L. A. and Raizer, V. Yu., Microwave model of a two-phase medium at the ocean surface, Izv., Atmos. Oceanic Phys., vol. 28, no. 8, pp. 650-656, 1992.
  13. Guo, J., Tsang, L., Asher, W., Ding, K.-H., and Chen, C.-T., Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 5, pp. 1019-1027, 2001.
  14. Militskii, Yu. A., Raizer, V. Yu., Sharkov, E. A., and Etkin, V. S., On scattering of UHF-radiation by foamy structures, J. Tech. Phys. Lett., vol. 2, no. 18, pp. 851-855 (in Russian), 1976.
  15. Raizer, V., A combined foam-spray model for ocean microwave radiometry, Proc. of IGARSS’2005, Seoul, Korea, July 25-29, 2005.
  16. Raizer, V., Macroscopic foam-spray models for ocean microwave radiometry, Proc. of IGARSS’2006, Denver, July 31-Aug. 04, 2006.
  17. Raizer, V., Macroscopic foam-spray models for ocean microwave radiometry, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3138-3144, 2007.
  18. Raizer, V. Yu. and Sharkov, E. A., Electrodynamic description of densely packed disperse media, Radiophys. Quantum Electron., vol. 24, no. 7, pp. 553-560, 1981.
  19. Raizer, V. Yu., Sharkov, E. A., and Etkin, V. S., Sea foam: Physical and chemical properties, emission and reflection characteristics, Space Research Institute of the USSR Academy of Sciences, Preprint No. 306 (in Russian), 1976.
  20. Rose, L. A., Asher, W. E., Reising, S. C., Gaiser, P. W., St. Germain, K. M., Dowgiallo, D. J., Horgan, K. A., Farquharson, G., and Knapp, E. J., Radiometric measurements of the microwave emissivity of foam, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 12, pp. 2619-2625, 2002.
  21. Sharkov, E. A., Passive Microwave Remote Sensing of the Earth: Physical Foundations, Chichester, UK: Praxis, 2003.
  22. Sharkov, E. A., Breaking Ocean Waves: Geometry, Structure, and Remote Sensing, Chichester, UK: Praxis, 2007.
  23. Shifrin, K. S., On the albedo theory, Trans. GGO, vol. 39, pp. 244-257 (in Russian), 1953.
  24. Stogryn, A., The emissivity of sea foam at microwave frequencies, J. Geophys. Res., vol. 77, no. 9, pp. 1658-1666, 1972.
  25. Vorsin, N. N., Glotov, A. A., Mirovskii, V. G., Raizer, V. Yu., Troika, I. A., Sharkov, E. A., and Etkin, V. S., Natural radio emissive measurements of sea foam structures, Sov. J. Remote Sens., vol. 2, no. 3, pp. 520-525, 1982.
Количество просмотров: 32369 Статья добавлена: 7 September 2010 Последнее изменение: 21 September 2011 © Copyright2010-2020 В начало