A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Low porosity ceramics for thermal barrier coatings

DOI: 10.1615/thermopedia.000173


Let us consider the radiative properties of zirconia ceramics produced by a plasma-spraying technology. This ceramic is widely used as a thermal barrier coating to provide thermal insulation and to protect metallic turbine-engine components from hot gas streams (Bose, 2007; Markosan et al., 2007; Golosnoy et al., 2009). The low thermal conductivity of the ceramic makes it possible to considerably decrease the temperature at the metal-ceramic interface even in the case of a small coating thickness (~0.1-0.5 mm). There are many other actual and potential industrial applications of yttria-partially-stabilized zirconia ceramics (Liang and Dutta, 2001; Bose, 2007). In many cases, one of ...

記事を全文表示するには登録しなければなりません。

既に登録されている場合、ここからログインして下さい
THERMOPEDIA™ への登録を希望される場合、ここからリクエストして下さい。

References

  1. Akopov, F. A., Val’ano, G. E., Vorob’ev, A.Y u., Mineev, V. N., Petrov, V. A., Chernyshev, A. P., and Chernyshev, G. P., Thermal radiative properties of ceramic of cubic ZrO2 stabilized with Y2O3 at high temperatures, High Temp., vol. 39, no. 2, pp. 244-254, 2001.
  2. Antou, G., Montavon, G., Hlawka, F., Cornet, A., and Coddet, C., Microstructures of partially stabilized zirconia manufactured via hybrid plasma spray process, Ceram. Int., vol. 31, no. 4, pp. 611-619, 2005.
  3. Baillis, D. and Sacadura, J.-F., Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization, J. Quant. Spectrosc. Radiat. Transfer, vol. 67, no. 5, pp. 327-363, 2000.
  4. Born, M. and Wolf, E., Principles of Optics, 7th (expanded) ed., New York: Cambridge University Press, 1999.
  5. Bose, S., High Temperature Coatings, Amsterdam: Elsevier Butterworth-Heinemann, 2007.
  6. Botha, P. J., Chiang, J. C. H., Comis, J. D., Mjwara, P. M., and Ngoepe, P. E., Behavior of elastic constants, refractive index, and lattice parameter of cubic zirconia at high temperature, J. Appl. Phys., vol. 73, no. 11, pp. 7268-7274, 1993.
  7. Cabannes, R. and Billard, D., Measurement of infrared absorption of some oxides in connection with the radiative transfer in porous and fibrous materials, Int. J. Thermophys., vol. 8, no. 1, pp. 97-118, 1987.
  8. Dombrovsky, L.A., Approximate models of radiation scattering in hollow-microsphere ceramics, High Temp., vol. 42, no. 5, pp. 772-779, 2004.
  9. Dombrovsky, L. A., Tagne, H. K., Baillis, D., and Gremillard, L., Near-infrared radiative properties of porous zirconia ceramics, Infrared Phys. Tech., vol. 51, no. 1, pp. 44-53, 2007.
  10. Eldridge, J. I. and Spuckler, C. M., Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings, J. Am. Ceramic Soc., vol. 91, no. 5, pp. 1603-1611, 2008.
  11. Eldridge, J. I., Spuckler, C. M., and Markham, J. R., Determination of scattering and absorption coefficients for plasma-sprayed yttria-stabilized zirconia thermal barrier coatings at elevated temperatures, J. Am. Ceramic Soc., vol. 92, no. 10, pp. 2276-2285, 2009.
  12. Ferriere, A., Lestrade, L., and Robert, J.-F., Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications, J. Solar Energy Eng., vol. 122, no. 1, pp. 9-13, 2000.
  13. Golosnoy, I. O., Cipitra, A., and Clyne, T. W., Heat transfer through plasma sprayed thermal barrier coatings in gas turbines--A review of recent work, J. Therm. Spray Technol., vol. 18, no. 5-6, pp. 809-821, 2009.
  14. Jadhav, A., Padture, N. P., Wu, F., Jordan, E. H., and Gell, M., Thick ceramic barrier coatings with high durability deposited using solution-precursor plasma spray, Mater. Sci. Eng. A, vol. 405, no. 1-2, pp. 313-320, 2005.
  15. Liang, Y. and Dutta, S. P., Application trend in advanced ceramic technologies, Technovation, vol. 21, no. 1, pp. 61-65, 2001.
  16. Makino, T., Kunitomo, T., Sakai, I., and Kinoshita, H., Thermal radiation properties of ceramic materials, Heat Transfer--Japan. Res., vol. 13, no. 4, pp. 33-50, 1984.
  17. Manara, J., Caps, R., Raether, F., and Fricke, J., Characterization of the pore structure of alumina ceramics by diffuse radiation propagation in the near infrared, Opt. Commun., vol. 168, no. 1-4, pp. 237-250, 1999.
  18. Markosan, N., Nylén, P., Wigren, J., and Li, X.-H., Low thermal conductivity coatings for gas turbine applications, J. Therm. Spray Technol., vol. 16, no. 4, pp. 498-505, 2007.
  19. Modest, M.F., Radiative Heat Transfer, 2nd ed., New York: Academic Press, 2003.
  20. Petrov, V. A. and Chernyshev, A. P., Thermal-radiation properties of zirconia when heated by laser radiation up to temperature of high-rate vaporization, High Temp., vol. 37, no. 1, pp. 58-66, 1999.
  21. Pfefferkorn, F. E., Incropera, F. P., and Shin, Y. C., Surface temperature measurement of semi-transparent ceramics by long-wavelength pyrometry, ASME J. Heat Transfer, vol. 125, no. 1, pp. 48-56, 2003.
  22. Sadooghi, P. and Aghanajafi, C., Thermal analysis for transient radiative cooling of a conducting semitransparent layer of ceramic in high-temperature applications, Infrared Phys. Technol., vol. 47, no. 3, pp. 278-285, 2006.
  23. Siegel, R., Transient effects of radiative transfer in semitransparent materials, Int. J. Eng. Sci., vol. 36, no. 11-12, pp. 1701-1739, 1998.
  24. Wood, D. L. and Nassau, K., Refractive index of cubic zirconia stabilized with yttria, Appl. Opt., vol. 21, no. 16, pp. 2978-2981, 1982.
  25. Wood, D. L., Nassau, K., and Kometani, T. Y., Refractive index of Y2O3 stabilized cubic zirconia: Variation with composition and wavelength, Appl. Opt., vol. 29, no. 16, pp. 2485-2488, 1990.
  26. Xie, L., Ma, X., Jordan, E. H., Padture, N. P., Xiao, D. T., and Gell, M., Identification of coating deposition mechanisms in the solution-precursor plasma-spray process using model spray experiments, Mater. Sci. Eng.A, vol. 362, no. 1-2, pp. 204-212, 2003.
表示回数:44762 記事追加日:7 September 2010 記事最終修正日:20 September 2011 ©著作権 2010-2019 トップへ戻る