A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Parallel implementation

DOI: 10.1615/thermopedia.009181


PARALLEL IMPLEMENTATION

Following from: Discrete ordinates and finite volume methods

The computational requirements for the solution of radiative heat transfer problems may be quite large, for example, in the case of 3D, geometrically complex enclosures containing a nongray emitting-absorbing-scattering medium. These requirements become even higher in the case of multimode heat transfer problems and in coupled fluid flow and radiative heat transfer problems. Parallel computing is an effective way to substantially increase the computational speed, since the computational load is distributed among several processors working in parallel on different parts of the problem. Even though the overall required CPU time is not reduced, the wall-clock time can be significantly lower. The use of parallel computing to solve radiative heat transfer problems in participating media is discussed ...

Vous devez souscrire un abonnement pour afficher le texte intégral de l'article.

Si vous êtes déjà abonné (e), veuillez vous identifier ici
Si vous souhaitez vous abonner à THERMOPEDIA™, veuillez en faire la demande ici.

References

  1. Azmy, Y. Y., Multiprocessing for Neutron Diffusion and Deterministic, Transport Prog. Nucl. Energy, vol. 31, no. 3, pp. 317−368, 1997.
  2. Bailey, T. S. and Falgout, R. D., Analysis of Massively Parallel Discrete-Ordinates Transport Sweep Algorithms with Collisions, Int. Conf. on Mathematics, Computational Methods and Reactor Physics, Saratoga Springs, New York, May 3−7, 2009.
  3. Benmalek, A., Tong, T. W., and Li, W., Distributed-Memory Parallel Algorithm for the Solution of the Spectral Radiative Transfer Equation, AIAA Paper No. 96−0606, 1996.
  4. Burns, S. P., Application of Spatial and Angular Domain Based Parallelism to a Discrete Ordinates Formulation with Unstructured Spatial Discretization, 2nd Int. Symp. on Radiative Heat Transfer, M. P. Mengüç, Ed., New York and Redding, CT: Begell House, pp. 173−193, 1997.
  5. Burns, S. P. and Christon, M. A., Spatial Domain-Based Parallelism in Large Scale, Participating-Media, Radiative Transport Applications, Numer. Heat Transfer, Part B, vol. 31, no. 4, pp. 401−422, 1997.
  6. Chandy, A. J., Glaze, D. J., and Frankel, S. H., Parallelizing the Discrete Ordinates Method (DOM) for Three-Dimensional Radiative Heat Transfer Calculations Using a Priority Queuing Technique, Numer. Heat Transfer, Part B, vol. 52, pp. 33−49, 2007.
  7. Coelho, P. J. and Gonçalves, J., Parallelization of the Finite Volume Method for Radiation Heat Transfer, Int. J. Numer. Methods Heat Fluid Flow, vol. 9, no. 4, pp. 388−404, 1999.
  8. Compton, J. C. and Clouse, J. C., Tiling Models for Spatial Decomposition in AMTRAN, Proc. of Joint Russian-American Five-Laboratory Conference on Computational Mathematics/Physics, Vienna, June 19−23, 2005.
  9. Dorr, M. R. and Still, C. H., Concurrent Source Iteration in the Solution of Three-Dimensional, Multigroup, Discrete Ordinates Neutron Transport, Nucl. Sci. Eng., vol. 122, no. 3, pp. 287−308, 1996.
  10. Fiterman, A., Ben-Zvi, R., and Kribus, A., DOTS: Pseudo-Time-Stepping Solution of the Discrete Ordinate Equations, Numer. Heat Transfer, Part B, vol. 35, pp. 163−183, 1999.
  11. Godoy, W. F. and Desjardin, P. E., On the Use of Flux Limiters in the Discrete Ordinates Method for 3D Radiation Calculations in Absorbing and Scattering Media, J. Comput. Phys., vol. 229, pp. 3189−3213, 2010.
  12. Gonçalves, J. and Coelho, P. J., Parallelization of the Discrete Ordinates Method, Numer. Heat Transfer, Part B, vol. 32, no. 2, pp. 151−173, 1997.
  13. Gritzo, L. A., Skocypec, R. D., and Tong, T. W., The Use of High-Performance Computing to Solve Participating Media Radiative Heat Transfer Problems-Results of an NSF Workshop, Sandia Report No. SAND95−0225, 1995.
  14. Haghighat, A., Angular Parallelization of a Curvilinear Sn Transport Theory Method, Nucl. Sci. Eng., vol. 108, pp. 267−277, 1991.
  15. Hannebutte, U. R. and Lewis, E. E., A Massively Parallel Algorithm for Radiative Transfer Calculations, ASME Paper No. 91−WA−HT−10, 1991.
  16. Hannebutte, U. R. and Lewis, E. E., A Massively Parallel Discrete Ordinates Response Matrix Method for Neutron Transport, Nucl. Sci. Eng., vol. 111, pp. 46−56, 1992.
  17. Koch, K. R., Baker, R. S., and Alcouffe, R. E., Solution of First-Order Form of Three-Dimensional Discrete Ordinates Equations on a Massively Parallel Machine, Trans. Am. Nucl. Soc., vol. 65, pp. 198−199, 1992.
  18. Krishnamoorthy, G., Rawat, R., and Smith, P. J., Parallel Computations of Radiative Heat Transfer Using the Discrete Ordinates Method, Numer. Heat Transfer, Part B, vol. 46, pp. 19−38, 2005a.
  19. Krishnamoorthy, G., Rawat, R., and Smith, P. J., Parallel Computations of Nongray Radiative Heat Transfer, Numer. Heat Transfer, Part B, vol. 48, pp. 191−211, 2005b.
  20. Liu, J., Shang, H. M., and Chen, Y. S., Parallel Simulation of Radiative Heat Transfer Using an Unstructured Finite-Volume Method, Numer. Heat Transfer, Part B, vol. 36, pp. 115−137, 1999.
  21. Mattis, R. and A. Haghighat, A., Domain Decomposition of a Two-Dimensional Sn Method, Nucl. Sci. Eng., vol. 111, pp. 180−196, 1992.
  22. Pautz, S. D., An Algorithm for Parallel Sn Sweeps on Unstructured Meshes, Nucl. Sci. Eng., vol. 140, pp. 111−136, 2002.
  23. Plimpton, S. J., Hendrickson, B., Burns, S. P., McLendon III, W., and Rauchwerger, L., Parallel Sn Sweeps on Unstructured Grids: Algorithms for Prioritization, Grid Partitioning, and Cycle-Detection, Nucl. Sci. Eng., vol. 150, pp. 267−283, 2005.
  24. Saad, S. and Schultz, M. H., GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. Scientific Stat. Comput., vol. 7, no. 3, pp. 856−869, 1986.
  25. Tal, J., Ben-Zvi, R., and Kribus, A., A High-Efficiency Parallel Solution of the Radiative Transfer Equation, Numer. Heat Transfer, Part B, vol. 44, pp. 295−308, 2003.
  26. Tong, T. W., Hoover, R. L., and Li, W., Parallel Computing of Participating-Media Radiative Heat Transfer, Proc. of 11th Int. Heat Transfer Conference, vol. 7, pp. 481−486, 1998.
  27. Van der Vorst, H. A., Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comput., vol. 13, pp. 631−644, 1992.
  28. Wienke, B. R. and Hiromoto, R. E., Parallel Sn Iteration Schemes, Nucl. Sci. Eng., vol. 90, pp. 116−123, 1985.
  29. Yavuz, V and Larsen, E. W., Iterative Methods for Solving x-y Geometry Sn Problems on Parallel Architecture Computers, Nucl. Sci. Eng., vol. 112, pp. 32−42, 1992.
  30. Yildiz, Ö and Bedir, H., A Parallel Solution to the Radiative Transport in Three-Dimensional Participating Media, Numer. Heat Transfer, Part B, vol. 50, pp. 79−95, 2006.
Nombre de vues : 17796 Article ajouté : 2 August 2012 Dernière modification de l'article : 3 October 2012 © Copyright 2010-2020 Retour en haut de page