Guide alphabétique, de la thermodynamique, amplification de chaleur, transfert de masse, et dynamique des fluides
Library Subscription:

Nature frequently uses cellular porous materials for functional purposes, such as bones, honeycombs, and foams (Banhart, 2001). Drawing inspiration from nature and this asset, the development of artificial cellular materials has greatly increased in the recent past. Such cellular materials are widely used today in many fields of technology. They are known to have many interesting combinations of physical, mechanical, and thermal properties. Their main characteristic is their very low density, inducing significant radiative transfer. There is a wide range of applications for these materials, such as use in shock absorbers, heat exchangers, filters, catalyst carrie ...

Vous devez souscrire un abonnement pour afficher le texte intégral de l'article.

Si vous êtes déjà abonné (e), veuillez vous identifier ici
Si vous souhaitez vous abonner à THERMOPEDIA™, veuillez en faire la demande ici.


  1. Baillis, D., Raynaud, M., and Sacadura, J.-F., Spectral radiative properties of open-cell foam insulation, J. Thermophys. Heat Transfer, vol. 13, no. 3, pp. 292-298, 1999.
  2. Baillis, D., Arduini-Schuster, M., and Sacadura, J.-F., Identification of spectral radiative properties of polyurethane foam from hemispherical and bi-directional transmittance and reflectance measurements, J. Quant. Spectrosc. Radiat. Transf., vol. 73, no. 2-5, pp. 297-306, 2002.
  3. Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., vol. 46, no. 6, pp. 559-632, 2001.
  4. Coquard, R. and Baillis, D., Modeling of heat transfer in low-density EPS foams, ASME J. Heat Transfer, vol. 128, no. 6, pp. 538-549, 2006.
  5. Coquard, R., Baillis, D., and Quenard, D., Radiative properties of expanded polystyrene foams, ASME J. Heat Transfer, vol. 131, no. 1, pp. 012702.1-012702.10, 2009.
  6. Coquard, R., Rochais, D., and Baillis, D., Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures, Fire Technol., DOI: 10.1007/s10694-010-0167-8, 2010.
  7. Dombrovsky, L. A. and Baillis, D., Thermal Radiation in Disperse Systems: An Engineering Approach, Redding, CT: Begell House, 2010.
  8. Gibson, L. J. and Ashby, M. F., Cellular Solids: Structure and Properties, 2nd ed., Cambridge, UK: Cambridge University Press, 1999.
  9. Glicksman, L. R., Marge, A. L., and Moreno, J. D., Radiation heat transfer in cellular foam insulation, ASME HTD, vol. 203, pp. 45-54, 1992.
  10. Hale, M. J. and Bohn, M. S., Measurements of the radiative transport properties of reticulated alumina foams, Proc. of. ASME/ASES Joint Solar Energy Conference, Washington, DC, April 4-9, pp. 507-515, 1993.
  11. Hendricks, T. J. and Howell, J. R., Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics, ASME J. Heat Transfer, vol. 118, no. 1, pp. 79-87, 1996.
  12. Kaemmerlen, A., Vo, C., Jeandel, G., and Baillis, D., Radiative properties of extruded polystyrene foams: Predictive models and experimental results, J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 6, pp. 865-877, 2010.
  13. Kuhn, J., Ebert, H. P., Arduini-Schuster, M. C., Büttner, D., and Fricke, J., Thermal transport in polystyrene and polyurethane foam insulations, Int. J. Heat Mass Transfer, vol. 35, no. 7, pp. 1795-1801, 1992.
  14. Loretz, M., Coquard, R., Baillis, D., and Maire E., Metallic foams: Radiative properties/comparison between different models, J. Quant. Spectrosc. Radiat. Transf., vol. 109, no. 1, pp. 16-27, 2008a.
  15. Loretz, M., Maire, E., and Baillis, D., Analytical modelling of the radiative properties of metallic foams: contribution of X-ray tomography, Adv. Eng. Mater., vol. 10, no. 4, pp. 352-360, 2008b.
  16. Öchsner, A., Murch, G. E., and de Lemos, M. J. S., Cellular and Porous Materials: Thermal Properties Simulation and Prediction, Wiley, Weinheim, 2008.
  17. Petrasch, J., Wyss, P., and Steinfeld, A., Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics, J. Quant. Spectrosc. Radiat. Transf., vol. 105, no. 2, pp. 180-197, 2007.
  18. Skocypec, R. D., Hogan, R. E., Jr., and Muir, J. F., Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: II--Modeling and analysis, Proc. of ASME-ISME 2nd International Solar Energy Conference, New York: ASME Solar Energy Division, pp. 303-310, 1991.
  19. Zeghondy, B., Iacona, E., and Taine, J., Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI), Int. J. Heat Mass Transfer, vol. 49, no. 17-18, pp. 2810-2819, 2006.
  20. Zhao, C. Y., Lu, T. J., and Hodson, H. P., Thermal radiation in ultralight metal foams with open cells, Int. J. Heat Mass Transfer, vol. 47, no. 14-16, pp. 2927-2939, 2004.
Nombre de vues : 38574 Article ajouté : 7 September 2010 Dernière modification de l'article : 17 January 2012 © Copyright 2010-2021 Retour en haut de page