Library Subscription:

Baillis and Coquard (2008) and Dombrovsky and Baillis (2010) give comprehensive general overviews of experimental approaches and theoretical models used to determine the radiative properties of highly porous cell foams in their books. A synthesis is presented herein concerning closed cell foams. More details and specific results can be found in these text books.

Closed cell foams find applications in a large number of technological fields. They are notably used for packaging or mechanical protection due to their excellent mechanical resistance. However, thermal insulation is their main scope of application. As a matter of fact, numerous materials used in frigorific or building insulation have a closed cell structure. Polystyrene or polyurethane (PUR) foams are the most widely sold ...

Necesita una suscripción para ver el texto completo del artículo.

Si ya tiene una suscripción, inicie sesión aquí
Si desea suscribirse a THERMOPEDIA™ haga su solicitud aquí.


  1. Baillis, D. and Coquard, R., Radiative and conductive thermal properties of foams, in Cellular and Porous Materials: Thermal Properties Simulation and Prediction, eds. Öchsner, A., Murch, G. E., and de Lemos, M. J. S, Weinheim: Wiley-VCH, pp. 343–384, 2008.
  2. Brewster, M. Q., Thermal Radiative Transfer and Properties, New York: Wiley, 1992.
  3. Campo-Arnáiz, R. A., Rodriguez-Pérez, M. A., Calvo, B., and de Saja, J. A., Extinction coefficient of polyolefin foams, J. Polym. Sci., Part B: Polym. Phys., vol. 43, no. 13, pp. 1608-1617, 2005.
  4. Coquard, R. and Baillis, D., Modeling of heat transfer in low-density EPS foams, ASME J. Heat Transfer, vol. 128, no. 6, pp. 538-549, 2006.
  5. Coquard, R., Baillis, D., and Quenard, D., Radiative properties of expanded polystyrene foams, ASME J. Heat Transfer, vol. 131, no. 1, pp. 012702.1-012702.10, 2009.
  6. Coquard, R., Baillis, D., and Maire E., Numerical investigation of the radiative properties of polymeric foams from tomographic images, AIAA J. Thermophys. Heat Transfer, vol. 24, no. 3, pp. 647-658, 2010.
  7. Dombrovsky, L. A. and Baillis, D., Thermal Radiation in Disperse Systems: An Engineering Approach, Redding, CT: Begell House, 2010.
  8. Draine, B. T. and Flatau, P. J., Discrete dipole approximation for scattering calculations, J. Opt. Soc. Am. A, vol. 11, no. 4, pp. 1491-1499, 1994.
  9. Draine, B.T. and Flatau, P. J., User Guide to the Discrete Dipole Approximation Code DDSCAT 6.1., Available at, 2004.
  10. Glicksman L. R. and Torpey, M. R., A study of radiative heat transfer through foam insulation, Subcontract Report No. 19X-09099C, Massachusetts Institute of Technology, 1988.
  11. Glicksman, L. R., Mozgowiec, M., and Torpey, M., Radiation heat transfer in foam insulation, Proc. of 9th International Heat Transfer Conference, Jerusalem, pp. 379-384, 1990.
  12. Kaemmerlen, A., Vo, C., Asllanaj, F., Jeandel, G., and Baillis, D., Radiative properties of extruded polystyrene foams: Predictive models and experimental results, J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 6, pp. 865-877, 2010.
  13. Kuhn, J., Ebert, H. P., Arduini-Schuster, M. C., Büttner, D., and Fricke, J., Thermal transport in polystyrene and polyurethane foam insulations, Int. J. Heat Mass Transfer, vol. 35, no. 7, pp. 1795-1801, 1992.
  14. Placido, E., Arduini-Schuster, M. C., and Kuhn, J., Thermal properties predictive model for insulating foams, Infrared Phys. Technol., vol. 46, no. 3, pp. 219-231, 2005.
  15. Siegel, R. and Howell, J. R., Thermal Radiation Heat Transfer, 4th ed., New York: Taylor & Francis, 2002.
  16. Tagne, K. H. T and Baillis, D., Radiative heat transfer using isotropic scaling approximation: Application to fibrous medium, ASME J. Heat Transfer, vol. 127, no. 10, pp. 1115-1123, 2005.
Número de vistos: 32255 Artículo añadido: 7 September 2010 Último artículo modificado: 17 January 2012 © Copyright 2010-2021 Volver arriba