A B C D E F G H I
IAEA ICE CONDENSER CONTAINMENTS, FOR NUCLEAR REACTOR ICE DRIFT ICHEME ICING IDEAL DIODE LAW IDEAL GAS IDEAL GAS LAW IDEAL MIXTURE IDEAL PLASMA IDEAL SOLUTIONS Identification procedure IEA IEE IFRF IGNITION, EXPLOSION Ill-posedness of inverse problems IMAGE SEQUENCE PROCESSING IMECHE Immersed Bodies, Flow Around and Drag IMMERSED BODIES, HEAT TRANSFER AND MASS TRANSFER IMMERSED JETS IMMISCIBLE LIQUIDS IMMISCIBLE LIQUIDS, BOILING HEAT TRANSFER IMPACT OF PARTICLES ON SURFACE IMPACTING SPRAYS IMPEDANCE METHOD FOR VOID FRACTIONS IMPELLER MIXERS IMPELLERS IMPINGEMENT SEPARATORS IMPINGING JETS IMPINGING SPRAYS IMPULSE TURBINES IMPULSES IMPURITIES IN CRYSTALS IN-LINE MIXERS IN-LINE TUBE BANKS INCINERATION INCLINED CHANNEL INCLINED TUBE BANKS INCLINED TUBES INCLINED WALLS INCLUSIONS INCOMPLETE GAMMA FUNCTION INCOMPRESSIBLE FLUID INDEFINITE INTEGRALS INDETERMINATE-ORIGIN NOZZLE JETS INDUCED DRAFT AIR COOLED HEAT EXCHANGERS INDUCTION HEATING INDUSTRIAL AERODYNAMICS INDUSTRIAL FUSION REACTORS INERT GASES INERTIAL CONFINEMENT REACTORS INERTIAL REFERENCE FRAMES INERTIAL SEPARATORS INFINITE SERIES INFINITE TRIGONOMETRIC SERIES INFLUENCE INFRA-RED DRYING INFRA-RED IMAGING INFRA-RED PHOTOGRAPHY INFRA-RED RADIATION INFRA-RED SPECTROSCOPY Infrared properties of carbon fibers Infrared spectra of molecules INGRESS INJECTION INLET EFFECTS IN CHANNEL FLOW INSTABILITIES IN LAMINAR FLOW INSTABILITIES IN TWO-PHASE SYSTEMS INSTABILITY Instability and Turbulence INSTABILITY OF SLIP FLOW INSTITUTE OF ENERGY, IoE INSTITUTION OF CHEMICAL ENGINEERS, ICHEME INSTITUTION OF ELECTRICAL ENGINEERS, IEE INSTITUTION OF MECHANICAL ENGINEERS, IMECHE INSULATION INSULATORS, ELECTRICAL INTEGRAL CONDENSATION CURVE INTEGRAL EQUATIONS INTEGRALS INTEGRATION BY PARTS INTEGRO-DIFFERENTIAL EQUATIONS INTENSE FORMATION OF HIGHER SILANES IN THE GAS PHASE INTENSIFICATION OF HEAT TRANSFER INTENSITY OF RADIATIVE ENERGY TRANSPORT INTER-DIFFUSION COEFFICIENT INTERFACE HEAT TRANSFER COEFFICIENT INTERFACE MASS TRANSFER COEFFICIENT INTERFACE STRUCTURE INFLUENCE INTERFACE TEMPERATURE DROP INTERFACE TRACKING SIMULATION OF BUBBLES Interfaces INTERFACIAL AREA INTERFACIAL CHARACTERISTICS INTERFACIAL FLOWS INTERFACIAL FRICTION FACTOR INTERFACIAL JUMP CONDITIONS INTERFACIAL MOMENTUM TRANSFER INTERFACIAL RESISTANCE INTERFACIAL SHEAR STRESS INTERFACIAL TENSION INTERFERENCE INTERFERENCE TECHNIQUES INTERFEROMETRY INTERMITTENCY INTERMITTENT FLOW INTERMOLECULAR FORCES INTERMOLECULAR PAIR POTENTIAL INTERMOLECULAR POTENTIALS INTERNAL COILS INTERNAL COMBUSTION ENGINES INTERNAL ENERGY Internal Flows INTERNAL HEAT GENERATION IN A TALL CAVITY INTERNAL REBOILERS INTERNATIONAL ATOMIC ENERGY AGENCY, IAEA INTERNATIONAL ENERGY AGENCY, IEA INTERNATIONAL FLAME RESEARCH FOUNDATION, IFRF INTERNATIONAL TEMPERATURE SCALE INUNDATION INUNDATION, EFFECT ON CONDENSATION INVERSE ANNULAR FLOW Inverse design of enclosures with participating media and multimode heat transfer INVERSE PROBLEM Inverse problems in radiation transfer INVERSE SOLUTIONS OF A SECOND-GRADE MAGNETOHYDRODYNAMIC ALIGNED FLUID FLOW INVERSION LAYER, EFFECT ON POLLUTION INVERSION POINT INVERSION POINT TEMPERATURE Inviscid Flow IoE ION EXCHANGE IONIC BONDING IONIC CONTINUA IONIZATION IONIZING RADIATION IONS IONS, TRANSPORT IN ELECTROLYTE IOTVOS NUMBER IRON IRREVERSIBILITY IRREVERSIBLE PROCESSES IRREVERSIBLE THERMODYNAMICS IRRIGATION GUN Irrotational Flow ISENTROPIC EXPONENT ISENTROPIC PROCESSES ISO-BUTANE ISO-OCTANE ISO-PROPANOL ISOBAR ISOBARIC JET ISOCHORE ISOELECTRIC POINTS ISOENTHALPIC PROCESS ISOGONAL MAPPING ISOTACH OR ISOVEL ISOTHERM ISOTHERMAL PROCESS ISOTOPES ITERATIVE METHOD
J K L M N O P Q R S T U V W X Y Z

IONIZATION

Interlinking between Articles
Visual Navigation

Ionization is the removal of charge—usually electrons—from neutral atoms to produce positive ions or alternatively, the deposition of extra charge giving negative ions. The simplest examples of ionization occur in gases due to high voltage breakdown, e.g., lightning or exposure to ultraviolet or Ionizing Radiation. Similar processes ar also found in liquids and solids.

In the electronic system of an atom there are many possible energy levels or states that electrons may occupy. No two electrons may have exactly the same state and, allowing for the quantum parameter called spin for which there are two possibilities (up and down), this usually means that two electrons may occupy each possible energy level. The most strongly-bound states, corresponding to electrons in "orbits" closer to the nucleus, are filled first. An atom in its ground state has all of its electrons placed in the lowest possible available energy levels. In fact, the energy of an electron in a particular level is quoted as the binding energy or the work that would have to be done to remove it completely from the atom. The outer electrons of an atom are most easily removed and have smaller binding or ionization energies. A general discussion of this area may be found in the work of Hecht (1994).

Any process that is able to transfer a large enough amount of energy, particularly to the outer electrons of an atom, may produce ionization. Possibilities include: strong electric fields, Electromagnetic Radiation, Ionizing (nuclear) Radiation, etc.

Ionization by Electric Fields

In gases a large enough electric field strips electrons away from atoms. The electrons are then accelerated through the medium. If there is a sufficient path length, the electrons may gain enough kinetic energy to produce secondary electrons by impact ionization, leading to an avalanche type breakdown. A very similar process may occur in solids, particularly semiconductor devices.

In certain molten materials and aqueous solutions the unit chemical cell is already dissociated into ions, e.g., sodium chloride into Na+ and Cl. The ions in these materials will support conduction, but these ions already existed before the application of an electric field.

Ionization by Electromagnetic Radiation

Electrons may be excited by the absorption of photons (quanta of electromagnetic energy). Photons of visible and ultraviolet light have energies similar to those required to liberate electrons from many materials.

Ionizing Radiation

Various forms of nuclear and atomic radiation can be detected by their ability to ionize matter. X-rays and γ rays are high energy electromagnetic photons capable of penetrating some distance through matter and producing a trail of ionization α-particles, β-particles and other high energy particles associated with radioactive decay are stopped from absorbing materials leaving a track of ionization.

REFERENCES

Hecht, E. (1994) Physics. Brooks Cole.

References

  1. Hecht, E. (1994) Physics. Brooks Cole.

Leading to:

IONIZING RADIATION

This article belongs to the following areas:

I in A-Z Index
Number of views: 1647 Article added: 2 February 2011 Article last modified: 13 February 2011 © Copyright 2010-2014 Back to top