A B C D E F G H I
IAEA ICE CONDENSER CONTAINMENTS, FOR NUCLEAR REACTOR ICE DRIFT ICHEME ICING IDEAL DIODE LAW IDEAL GAS IDEAL GAS LAW IDEAL MIXTURE IDEAL PLASMA IDEAL SOLUTIONS Identification procedure IEA IEE IFRF IGNITION, EXPLOSION Ill-posedness of inverse problems IMAGE SEQUENCE PROCESSING IMECHE Immersed Bodies, Flow Around and Drag IMMERSED BODIES, HEAT TRANSFER AND MASS TRANSFER IMMERSED JETS IMMISCIBLE LIQUIDS IMMISCIBLE LIQUIDS, BOILING HEAT TRANSFER IMPACT OF PARTICLES ON SURFACE IMPACTING SPRAYS IMPEDANCE METHOD FOR VOID FRACTIONS IMPELLER MIXERS IMPELLERS IMPINGEMENT SEPARATORS IMPINGING JETS IMPINGING SPRAYS IMPULSE TURBINES IMPULSES IMPURITIES IN CRYSTALS IN-LINE MIXERS IN-LINE TUBE BANKS INCINERATION INCLINED CHANNEL INCLINED TUBE BANKS INCLINED TUBES INCLINED WALLS INCLUSIONS INCOMPLETE GAMMA FUNCTION INCOMPRESSIBLE FLUID INDEFINITE INTEGRALS INDETERMINATE-ORIGIN NOZZLE JETS INDUCED DRAFT AIR COOLED HEAT EXCHANGERS INDUCTION HEATING INDUSTRIAL AERODYNAMICS INDUSTRIAL FUSION REACTORS INERT GASES INERTIAL CONFINEMENT REACTORS INERTIAL REFERENCE FRAMES INERTIAL SEPARATORS INFINITE SERIES INFINITE TRIGONOMETRIC SERIES INFLUENCE INFRA-RED DRYING INFRA-RED IMAGING INFRA-RED PHOTOGRAPHY INFRA-RED RADIATION INFRA-RED SPECTROSCOPY Infrared properties of carbon fibers Infrared spectra of molecules INGRESS INJECTION INLET EFFECTS IN CHANNEL FLOW INSTABILITIES IN LAMINAR FLOW INSTABILITIES IN TWO-PHASE SYSTEMS INSTABILITY Instability and Turbulence INSTABILITY OF SLIP FLOW INSTITUTE OF ENERGY, IoE INSTITUTION OF CHEMICAL ENGINEERS, ICHEME INSTITUTION OF ELECTRICAL ENGINEERS, IEE INSTITUTION OF MECHANICAL ENGINEERS, IMECHE INSULATION INSULATORS, ELECTRICAL INTEGRAL CONDENSATION CURVE INTEGRAL EQUATIONS INTEGRALS INTEGRATION BY PARTS INTEGRO-DIFFERENTIAL EQUATIONS INTENSE FORMATION OF HIGHER SILANES IN THE GAS PHASE INTENSIFICATION OF HEAT TRANSFER INTENSITY OF RADIATIVE ENERGY TRANSPORT INTER-DIFFUSION COEFFICIENT INTERFACE HEAT TRANSFER COEFFICIENT INTERFACE MASS TRANSFER COEFFICIENT INTERFACE STRUCTURE INFLUENCE INTERFACE TEMPERATURE DROP INTERFACE TRACKING SIMULATION OF BUBBLES Interfaces INTERFACIAL AREA INTERFACIAL CHARACTERISTICS INTERFACIAL FLOWS INTERFACIAL FRICTION FACTOR INTERFACIAL JUMP CONDITIONS INTERFACIAL MOMENTUM TRANSFER INTERFACIAL RESISTANCE INTERFACIAL SHEAR STRESS INTERFACIAL TENSION INTERFERENCE INTERFERENCE TECHNIQUES INTERFEROMETRY INTERMITTENCY INTERMITTENT FLOW INTERMOLECULAR FORCES INTERMOLECULAR PAIR POTENTIAL INTERMOLECULAR POTENTIALS INTERNAL COILS INTERNAL COMBUSTION ENGINES INTERNAL ENERGY Internal Flows INTERNAL HEAT GENERATION IN A TALL CAVITY INTERNAL REBOILERS INTERNATIONAL ATOMIC ENERGY AGENCY, IAEA INTERNATIONAL ENERGY AGENCY, IEA INTERNATIONAL FLAME RESEARCH FOUNDATION, IFRF INTERNATIONAL TEMPERATURE SCALE INUNDATION INUNDATION, EFFECT ON CONDENSATION INVERSE ANNULAR FLOW Inverse design of enclosures with participating media and multimode heat transfer INVERSE PROBLEM Inverse problems in radiation transfer INVERSE SOLUTIONS OF A SECOND-GRADE MAGNETOHYDRODYNAMIC ALIGNED FLUID FLOW INVERSION LAYER, EFFECT ON POLLUTION INVERSION POINT INVERSION POINT TEMPERATURE Inviscid Flow IoE ION EXCHANGE IONIC BONDING IONIC CONTINUA IONIZATION IONIZING RADIATION IONS IONS, TRANSPORT IN ELECTROLYTE IOTVOS NUMBER IRON IRREVERSIBILITY IRREVERSIBLE PROCESSES IRREVERSIBLE THERMODYNAMICS IRRIGATION GUN Irrotational Flow ISENTROPIC EXPONENT ISENTROPIC PROCESSES ISO-BUTANE ISO-OCTANE ISO-PROPANOL ISOBAR ISOBARIC JET ISOCHORE ISOELECTRIC POINTS ISOENTHALPIC PROCESS ISOGONAL MAPPING ISOTACH OR ISOVEL ISOTHERM ISOTHERMAL PROCESS ISOTOPES ITERATIVE METHOD
J K L M N O P Q R S T U V W X Y Z

INTEGRO-DIFFERENTIAL EQUATIONS

Interlinking between Articles
Visual Navigation

An integro-differential equation is a mathematical expression which contains derivatives of the required function and its integral transforms. Such equations are typical of those processes where a quantity of interest (a required function) at each point is not unambiguously determined by its value near the point—as on processes described by differential equations—but also depends on the function distribution all over the domain. For instance, a radiation energy intensity along the ray in the emitting, absorbing and scattering medium (I ) is described by an integro-differential equation of radiation transfer, having the form

(1)

where Ka, Ks are the absorbtion and scattering coefficients; Ke = Ka + Ks is the attenuation coefficient; and Φ is the scattering phase function. The physical meaning of Eq. (1) is that variation of intensity at a given point along a given direction depends on both the local processes of absorption, scattering (first term on right-hand side) the self-emittance of the medium (second term) and a process of radiation scattering converging to the given point from a whole volume. If only one independent variable is involved in an integro-differential equation, the latter is called an ordinary integro-differential equation. If an integro-differential equation includes derivatives of more than one independent variable, it is called a partial integro-differential equation.

The linear integro-differential equation is a relationship LD(y) + LI(y) = f, where LD is a linear differentiation operator; LI is a linear integration operator such that LD(y1 + y2) = LD(y1) + LD(y2); LI(y1 + y2) = LI(y1) + LI(y2); and f is an arbitrary function of the independent variables. A linear integro-differential equation with partial derivatives of the second order has a differential type of operator. For instance, the equation

(2)

belongs to the hyperbolic type if α = 0, β = 1; to the elliptic if α = 0, β = −1; and to the parabolic type if α = 1, β ≠ 0. An integro-differential equation is singular if the kernel of integral transform tends to infinity at one or several points of the function domain. An example is the Prandtl equation for air circulation around the plane wing

(3)

which is also common for other fields of applied mathematics. Another example is one of the forms of heat conduction equation, which takes into account a finite speed of heat transport in the medium

(4)

where τ is the relaxation time. Analytical solutions of integro-differential equations can sometimes be achieved by reducing them to differential or integral equations and applying sufficiently worked out methods to solve the latter. In some cases, a method of separation of variables can be useful for reducing a partial integro-differential equation to an ordinary one (for instance, Eq. (2)). Semianalytical solutions of ordinary linear integro-differential equations containing an integral Volterra operator with a difference kernel can be obtained by the Laplace Transform method. Nowadays, numerical methods for solution of integro-differential equations are widely employed which are similar to those used for differential equations.

This article belongs to the following areas:

I in A-Z Index
Number of views: 3288 Article added: 2 February 2011 Article last modified: 13 February 2011 © Copyright 2010-2014 Back to top