A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Visual Map Navigation

View in A-Z Index

Related content in other products

International Heat Transfer Conference Digital Library International Centre for Heat and Mass Transfer Digital Library Begell House Journals Annual Review of Heat Transfer

DELTA FUNCTION

DOI: 10.1615/AtoZ.d.delta_function

The Dirac Delta Function δ(x - a) is an impulsive function defined as zero for every value of x, except for the point x ≠ a where it jumps to an infinitely large value. However, its graph encloses a unit area. It can be regarded as an idealization of a unit impulse. We define δ(x - a) through the following two properties:

This function has the following important property: for any continuous function f(x),

that is, δ(x - a) applied to f(x) detects its value at x = a.

We can heuristically show the validity of this property using the following argument: Let us approximate δ(x - a) through the function δε(x - a), such that:

which approaches δ(x - a) as ε tends to zero.

Clearly, the area covered by δε(x - a) is equal to one;

The function δε(x - a) an approximation to the Delta function.

Figure 1. The function δε(x - a) an approximation to the Delta function.

Furthermore, let F(x) be the primitive of f(x) (that is F'(x) = f(x)), then:

as ε goes to zero, the last expression defines the derivative of F(x) at x = a, which is precisely f(a).

The function δ(x - a) has a number of important applications in mathematical physics, in particular the solution of differential equations. In fact, it belongs to a class of generalized functions called distributions.

REFERENCES

Schwartz, L. (1973) Théorie des Distributions, Hermann, Paris.

Number of views: 6300 Article added: 2 February 2011 Article last modified: 9 February 2011 © Copyright 2010-2016 Back to top