A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Visual Map Navigation

View in Semantic Map View in A-Z Index

Related content in other products

International Heat Transfer Conference Digital Library International Centre for Heat and Mass Transfer Digital Library Begell House Journals Annual Review of Heat Transfer

Stream Function

DOI: 10.1615/AtoZ.s.stream_function

The stream function is a function of coordinates and time and is a three-dimensional property of the hydrodynamics of an inviscid liquid, which allows us to determine the components of velocity by differentiating the stream function with respect to the given coordinates. A family of curves ψ = const represent "streamlines," hence, the stream function remains constant along a stream line.

In the case of a two-dimensional flow, the velocity components ux, uy are expressed in terms of the stream function with the help of formulas ux = ∂ψ/∂y, uy = −∂ψ/∂x. The difference ψ1 − ψ2 of the values of ψ for two streamlines can be interpreted as a volume, flow rate of a fluid in plane flow through a stream tube bounded by these two lines. In a potential plane flow the potential φ and the stream function ψ make a complex potential ω = φ + iψ, but the existence of the stream function is only related to the three-dimensional character of flow and in no way requires its potentiality. The stream function can be also defined for two-dimensional space flows, for instance, it is often used to describe a longitudinal flow past axisymmetrical bodies in a spherical system of coordinates, where

The stream function represents a particular case of a vector potential of velocity , related to velocity by the equality . If there is a curvilinear system of coordinares in which has only one component, then it is exactly this system that represents the stream function for the given flow.

Number of views: 18899 Article added: 2 February 2011 Article last modified: 16 March 2011 © Copyright 2010-2016 Back to top